Tandem Base-Metal Oxide Catalyst for Automotive Three-way Reaction: MnFe2O4 for Preferential Oxidation of Hydrocarbon

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
Keisuke Maruichi, Ryosuke Sakai, Kakuya Ueda, Akira Oda, Atsushi Satsuma
{"title":"Tandem Base-Metal Oxide Catalyst for Automotive Three-way Reaction: MnFe2O4 for Preferential Oxidation of Hydrocarbon","authors":"Keisuke Maruichi,&nbsp;Ryosuke Sakai,&nbsp;Kakuya Ueda,&nbsp;Akira Oda,&nbsp;Atsushi Satsuma","doi":"10.1007/s10563-022-09373-9","DOIUrl":null,"url":null,"abstract":"<div><p>A combination of two base-metal oxides in tandem configuration can realize three-way reaction without platinum group metals. For this purpose, catalysts for hydrocarbon preferential oxidation (HC-PROX) and for NO reduction by CO are required. For the design of HC-PROX catalysts, competitive oxidation of propene and CO on spinel-type MFe<sub>2</sub>O<sub>4</sub> (M = Co, Cu, Mg, Mn, Ni, Zn) was investigated. MnFe<sub>2</sub>O<sub>4</sub> preferentially oxidized propene in the co-presence of CO showing the best propene oxidation activity. Among the series of MFe<sub>2</sub>O<sub>4</sub>, the activity controlling factor was correlated to the M-O bond energy of the second metal oxides, and the preference for HC oxidation was dependent on the electronegativity of the second ion. A tandem catalyst using MnFe<sub>2</sub>O<sub>4</sub> for HC-PROX and CuCo<sub>2</sub>O<sub>4</sub> for NO-CO reaction showed TWC activity comparable to a Rh/CeO<sub>2</sub>.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 1","pages":"48 - 55"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-022-09373-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

A combination of two base-metal oxides in tandem configuration can realize three-way reaction without platinum group metals. For this purpose, catalysts for hydrocarbon preferential oxidation (HC-PROX) and for NO reduction by CO are required. For the design of HC-PROX catalysts, competitive oxidation of propene and CO on spinel-type MFe2O4 (M = Co, Cu, Mg, Mn, Ni, Zn) was investigated. MnFe2O4 preferentially oxidized propene in the co-presence of CO showing the best propene oxidation activity. Among the series of MFe2O4, the activity controlling factor was correlated to the M-O bond energy of the second metal oxides, and the preference for HC oxidation was dependent on the electronegativity of the second ion. A tandem catalyst using MnFe2O4 for HC-PROX and CuCo2O4 for NO-CO reaction showed TWC activity comparable to a Rh/CeO2.

Abstract Image

汽车三路反应用串联贱金属氧化物催化剂:优先氧化烃类的MnFe2O4
两种贱金属氧化物串联组合可以实现不含铂族金属的三元反应。为此,需要碳氢化合物优先氧化(HC-PROX)和一氧化碳还原NO的催化剂。为了设计HC-PROX催化剂,研究了丙烯和CO在尖晶石型MFe2O4 (M = CO, Cu, Mg, Mn, Ni, Zn)上的竞争性氧化反应。MnFe2O4在CO共存在下优先氧化丙烯,表现出最佳的丙烯氧化活性。在MFe2O4系列中,活性控制因子与第二金属氧化物的M-O键能有关,对HC氧化的偏好取决于第二离子的电负性。采用MnFe2O4催化HC-PROX, CuCo2O4催化NO-CO反应的串联催化剂的TWC活性与Rh/CeO2相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信