Nonlinear Fourier Methods for Ocean Waves

Alfred R. Osborne
{"title":"Nonlinear Fourier Methods for Ocean Waves","authors":"Alfred R. Osborne","doi":"10.1016/j.piutam.2018.03.011","DOIUrl":null,"url":null,"abstract":"<div><p><em>Multiperiodic Fourier series solutions</em> of <em>integrable nonlinear wave equations</em> are applied to the study of ocean waves for scientific and engineering purposes. These series can be used to compute analytical formulae for the <em>stochastic properties</em> of nonlinear equations, in analogy to the standard approach for linear equations. Here I emphasize analytically computable results for the <em>correlation functions, power spectra</em> and <em>coherence functions</em> of a <em>nonlinear random process</em> associated with an integrable nonlinear wave equation. The multiperiodic Fourier series have the advantage that the <em>coherent structures</em> of soliton physics are encoded in the formulation, so that <em>solitons, breathers, vortices,</em> etc. are contained in the <em>temporal evolution</em> of the nonlinear power spectrum and phases. I illustrate the method for the Korteweg-deVries and nonlinear SchrÖdinger equations. Applications of the method to the analysis of data are discussed.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"26 ","pages":"Pages 112-123"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2018.03.011","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983818300117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Multiperiodic Fourier series solutions of integrable nonlinear wave equations are applied to the study of ocean waves for scientific and engineering purposes. These series can be used to compute analytical formulae for the stochastic properties of nonlinear equations, in analogy to the standard approach for linear equations. Here I emphasize analytically computable results for the correlation functions, power spectra and coherence functions of a nonlinear random process associated with an integrable nonlinear wave equation. The multiperiodic Fourier series have the advantage that the coherent structures of soliton physics are encoded in the formulation, so that solitons, breathers, vortices, etc. are contained in the temporal evolution of the nonlinear power spectrum and phases. I illustrate the method for the Korteweg-deVries and nonlinear SchrÖdinger equations. Applications of the method to the analysis of data are discussed.

海浪的非线性傅立叶方法
可积非线性波动方程的多周期傅里叶级数解用于科学和工程目的的海浪研究。这些级数可以用来计算非线性方程的随机性质的解析公式,类似于线性方程的标准方法。本文强调了与可积非线性波动方程相关的非线性随机过程的相关函数、功率谱和相干函数的可解析计算结果。多周期傅里叶级数的优点是将孤子物理的相干结构编码在公式中,使得孤子、呼吸子、漩涡等都包含在非线性功率谱和相位的时间演化中。我说明了Korteweg-deVries和非线性SchrÖdinger方程的方法。讨论了该方法在数据分析中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信