Stabilizability of Mechanical Systems Subjected to Digital PIDA Control

Dávid Lehotzky, Tamás Insperger
{"title":"Stabilizability of Mechanical Systems Subjected to Digital PIDA Control","authors":"Dávid Lehotzky,&nbsp;Tamás Insperger","doi":"10.1016/j.piutam.2017.08.017","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a study on the limits of stabilizability of unstable second-order dynamical systems by means of digital proportional-integral-derivative-acceleration (PIDA) feedback. Four different models are considered, which are all governed by the same dimensionless second-order differential equation. The mathematical model under analysis is a hybrid system involving terms with piecewise constant arguments due to the discrete sampling and actuation of the controller. Closed form formulas are derived for the domain of stability and for the limits of stabilizability as function of the system parameters, the sampling period and the control gains. It is concluded that while the acceleration term extends the limit of stabilizability, the integral term reduces stabilizability properties.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"22 ","pages":"Pages 131-138"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.08.017","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817301062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a study on the limits of stabilizability of unstable second-order dynamical systems by means of digital proportional-integral-derivative-acceleration (PIDA) feedback. Four different models are considered, which are all governed by the same dimensionless second-order differential equation. The mathematical model under analysis is a hybrid system involving terms with piecewise constant arguments due to the discrete sampling and actuation of the controller. Closed form formulas are derived for the domain of stability and for the limits of stabilizability as function of the system parameters, the sampling period and the control gains. It is concluded that while the acceleration term extends the limit of stabilizability, the integral term reduces stabilizability properties.

数字PIDA控制下机械系统的稳定性
本文用数字比例-积分-导数-加速度(PIDA)反馈方法研究了不稳定二阶动力系统的可稳定化极限。考虑了四种不同的模型,它们都由相同的无量纲二阶微分方程控制。所分析的数学模型是一个包含分段常数参数项的混合系统,这是由于控制器的离散采样和驱动造成的。导出了稳定域和稳定极限随系统参数、采样周期和控制增益的函数的封闭形式公式。结果表明,加速项扩展了稳定性的极限,而积分项降低了稳定性的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信