Dynamics of Cutting Near Double Hopf Bifurcation

Tamás G. Molnár , Zoltán Dombóvári , Tamás Insperger , Gábor Stépán
{"title":"Dynamics of Cutting Near Double Hopf Bifurcation","authors":"Tamás G. Molnár ,&nbsp;Zoltán Dombóvári ,&nbsp;Tamás Insperger ,&nbsp;Gábor Stépán","doi":"10.1016/j.piutam.2017.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>Bifurcation analysis of the orthogonal cutting model with cutting force nonlinearity is presented with special attention to double Hopf bifurcations. The normal form of the system in the vicinity of the double Hopf point is derived analytically by means of center manifold reduction. The dynamics is restricted to a four-dimensional center manifold, and the long-term behavior is illustrated on simplified phase portraits in two dimensions. The topology of the phase portraits reveal the coexistence of periodic and quasi-periodic solutions, which are computed by approximate analytical formulas.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"22 ","pages":"Pages 123-130"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.08.016","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817301050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Bifurcation analysis of the orthogonal cutting model with cutting force nonlinearity is presented with special attention to double Hopf bifurcations. The normal form of the system in the vicinity of the double Hopf point is derived analytically by means of center manifold reduction. The dynamics is restricted to a four-dimensional center manifold, and the long-term behavior is illustrated on simplified phase portraits in two dimensions. The topology of the phase portraits reveal the coexistence of periodic and quasi-periodic solutions, which are computed by approximate analytical formulas.

双Hopf分岔附近的切割动力学
对具有切削力非线性的正交切削模型进行了分岔分析,重点研究了双Hopf分岔问题。利用中心流形约简的方法,导出了系统在双Hopf点附近的范式。动力学被限制在一个四维中心流形中,并在二维的简化相位图上说明了长期行为。相位图的拓扑结构揭示了周期解和准周期解的共存,这些解由近似解析公式计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信