Mechanics of Materials Creation: Nanotubes, Graphene, Carbyne, Borophenes

John M. Alred, Nitant Gupta, Mingjie Liu, Zhuhua Zhang, Boris I. Yakobson
{"title":"Mechanics of Materials Creation: Nanotubes, Graphene, Carbyne, Borophenes","authors":"John M. Alred,&nbsp;Nitant Gupta,&nbsp;Mingjie Liu,&nbsp;Zhuhua Zhang,&nbsp;Boris I. Yakobson","doi":"10.1016/j.piutam.2017.03.032","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we provide brief overview of how mechanics and computations play a role in understanding materials growth, creating new low-dimensional materials and exploring structural defects. First, we introduce a concept of screw dislocation for describing carbon nanotube growth and derive a kinetic relationship between growth rate and chiral angle. Deeper analysis of the subtle balance between the kinetic and thermodynamic views reveals sharply peaked distribution of near-armchair nanotubes, explaining puzzling (n, n-1) types observed experimentally. A combination of <em>ab initio</em> calculations and Monte Carlo models further explains the low symmetry shapes of graphene on substrates. Being monoatomic chains of carbon, carbynes are shown to be strong yet flexible, and undergo metal-semiconductor transition under tension, offering promising innovations for future nanotechnology. We then reveal how metal substrates could facilitate the formation of boron monolayers whose bulk counterparts are non-layered and lower in energy. Further remarks are given to High Burger's vector graphene defects called D-loops and interfaces in hybrid graphene-BN materials, both with significant out-of plane distortion and impact on the mechanical properties. All of these computationally modeled systems have significant implications for the future use of these nanomaterials.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"21 ","pages":"Pages 17-24"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.03.032","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817300469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, we provide brief overview of how mechanics and computations play a role in understanding materials growth, creating new low-dimensional materials and exploring structural defects. First, we introduce a concept of screw dislocation for describing carbon nanotube growth and derive a kinetic relationship between growth rate and chiral angle. Deeper analysis of the subtle balance between the kinetic and thermodynamic views reveals sharply peaked distribution of near-armchair nanotubes, explaining puzzling (n, n-1) types observed experimentally. A combination of ab initio calculations and Monte Carlo models further explains the low symmetry shapes of graphene on substrates. Being monoatomic chains of carbon, carbynes are shown to be strong yet flexible, and undergo metal-semiconductor transition under tension, offering promising innovations for future nanotechnology. We then reveal how metal substrates could facilitate the formation of boron monolayers whose bulk counterparts are non-layered and lower in energy. Further remarks are given to High Burger's vector graphene defects called D-loops and interfaces in hybrid graphene-BN materials, both with significant out-of plane distortion and impact on the mechanical properties. All of these computationally modeled systems have significant implications for the future use of these nanomaterials.

材料创造的力学:纳米管、石墨烯、碳炔、硼罗芬
在本文中,我们简要概述了力学和计算如何在理解材料生长,创造新的低维材料和探索结构缺陷方面发挥作用。首先,我们引入螺旋位错的概念来描述碳纳米管的生长,并推导出生长速率与手性角之间的动力学关系。对动力学和热力学观点之间微妙平衡的深入分析揭示了近扶手椅型纳米管的急剧峰值分布,解释了实验观察到的令人困惑的(n, n-1)类型。从头计算和蒙特卡罗模型的结合进一步解释了石墨烯在衬底上的低对称性形状。作为单原子碳链,碳炔被证明是坚固而灵活的,并且在张力下经历金属半导体转变,为未来的纳米技术提供了有希望的创新。然后,我们揭示了金属衬底如何促进硼单层的形成,而硼单层的体积对应物是非层状的,能量较低。进一步讨论了高伯格矢量石墨烯缺陷,称为d环和混合石墨烯- bn材料中的界面,两者都具有显着的面外扭曲和对机械性能的影响。所有这些计算模拟系统对这些纳米材料的未来使用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信