Influence of Flexoelectric Effects on Current-voltage Characteristic of Polydomain in Ferroelectric Thin Films

Limei Jiang , Xiaofei Xu , Yichun Zhou
{"title":"Influence of Flexoelectric Effects on Current-voltage Characteristic of Polydomain in Ferroelectric Thin Films","authors":"Limei Jiang ,&nbsp;Xiaofei Xu ,&nbsp;Yichun Zhou","doi":"10.1016/j.piutam.2017.03.037","DOIUrl":null,"url":null,"abstract":"<div><p>Strain gradients at domain walls in polydomain ferroelectric thin films generally are huge, reaching a value of 10<sup>7</sup>-10<sup>8</sup> m<sup>-1</sup>, appears at domain walls. These huge strain gradients always play a considerable impact on polarization distribution via flexoelectricity. However, the ability of the flexoelectricity to tune the leakage current in ferroelectric nanofilms is untouched to date. By combining the phase field model and diffusion equations for an electron/electron hole, a self-consistent model is established to investigate the influence of flexoelectric effect on the current-voltage characteristic of Pt/Pb(Zr<sub>0.1</sub>Ti<sub>0.9</sub>)O<sub>3</sub>/Pt capacitor. It is shown that the longitudinal flexoelectric coefficient related coupling type would reduce the electric potential, and thus, increase the electron hole concentration and cause leakage current increasing in thin films. In contrast, the transverse flexoelectric coefficient related coupling type would raise the electric potential, decrease the electron hole concentration and cause leakage current decreasing in thin films.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"21 ","pages":"Pages 56-62"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.03.037","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817300512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Strain gradients at domain walls in polydomain ferroelectric thin films generally are huge, reaching a value of 107-108 m-1, appears at domain walls. These huge strain gradients always play a considerable impact on polarization distribution via flexoelectricity. However, the ability of the flexoelectricity to tune the leakage current in ferroelectric nanofilms is untouched to date. By combining the phase field model and diffusion equations for an electron/electron hole, a self-consistent model is established to investigate the influence of flexoelectric effect on the current-voltage characteristic of Pt/Pb(Zr0.1Ti0.9)O3/Pt capacitor. It is shown that the longitudinal flexoelectric coefficient related coupling type would reduce the electric potential, and thus, increase the electron hole concentration and cause leakage current increasing in thin films. In contrast, the transverse flexoelectric coefficient related coupling type would raise the electric potential, decrease the electron hole concentration and cause leakage current decreasing in thin films.

柔性电效应对铁电薄膜多畴电流-电压特性的影响
在多畴铁电薄膜中,畴壁处的应变梯度通常很大,达到107-108 m-1。这些巨大的应变梯度对挠性电的极化分布有很大的影响。然而,柔性电调节铁电纳米膜中漏电流的能力迄今尚未触及。结合相场模型和电子/电子空穴扩散方程,建立了自洽模型,研究了挠曲电效应对Pt/Pb(Zr0.1Ti0.9)O3/Pt电容器电流-电压特性的影响。结果表明,与纵向挠性电系数相关的耦合类型会降低薄膜内的电势,从而增加薄膜内的电子空穴浓度,导致漏电流增大。而与横向挠性电系数相关的耦合类型会使薄膜的电势升高,电子空穴浓度降低,导致漏电流减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信