Computation of the Starting Vortex Flow Past a Flat Plate

Ling Xu , Monika Nitsche , Robert Krasny
{"title":"Computation of the Starting Vortex Flow Past a Flat Plate","authors":"Ling Xu ,&nbsp;Monika Nitsche ,&nbsp;Robert Krasny","doi":"10.1016/j.piutam.2017.03.019","DOIUrl":null,"url":null,"abstract":"<div><p>This paper compares two numerical methods applied to compute the starting vortex flow past a flat plate. The plate is inclined relative to a constant background flow at angle α, with α = 90°, 60°, 30°. The numerical methods considered are (1) direct numerical simulation of the viscous flow (DNS), and (2) an inviscid vortex sheet model. The viscous DNS solves the Navier- Stokes equations by an operator splitting finite-difference method, for Reynolds numbers <em>Re</em> = 250, 500, 1000, 2000. The inviscid flow is computed by a regularized vortex sheet method, with the unsteady Kutta condition imposed at the edges of the plate, for regularization parameters δ = 0.2, 0.1, 0.05. We present viscous vorticity contours, and compare streaklines and shed circulation obtained with both methods. Good agreement is found in the large-scale features of the separated spiral streaklines and the shed circulation as <em>Re</em> increases and δ decreases. For small inclination angle α, secondary separation on the downwind side of the plate introduces small-scale features in the viscous flow that are absent in the inviscid model. The vortex sheet model is much less costly than the viscous DNS, but it is limited by the omission of the boundary layers present in the viscous flow.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"20 ","pages":"Pages 136-143"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.03.019","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817300202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper compares two numerical methods applied to compute the starting vortex flow past a flat plate. The plate is inclined relative to a constant background flow at angle α, with α = 90°, 60°, 30°. The numerical methods considered are (1) direct numerical simulation of the viscous flow (DNS), and (2) an inviscid vortex sheet model. The viscous DNS solves the Navier- Stokes equations by an operator splitting finite-difference method, for Reynolds numbers Re = 250, 500, 1000, 2000. The inviscid flow is computed by a regularized vortex sheet method, with the unsteady Kutta condition imposed at the edges of the plate, for regularization parameters δ = 0.2, 0.1, 0.05. We present viscous vorticity contours, and compare streaklines and shed circulation obtained with both methods. Good agreement is found in the large-scale features of the separated spiral streaklines and the shed circulation as Re increases and δ decreases. For small inclination angle α, secondary separation on the downwind side of the plate introduces small-scale features in the viscous flow that are absent in the inviscid model. The vortex sheet model is much less costly than the viscous DNS, but it is limited by the omission of the boundary layers present in the viscous flow.

平板起始涡旋流动的计算
本文比较了两种计算平板起始涡旋流动的数值方法。在α = 90°,60°,30°时,平板相对于恒定背景流倾斜。考虑的数值方法有:(1)直接数值模拟粘性流动(DNS)和(2)无粘涡片模型。当雷诺数Re = 250,500,1000,2000时,粘性DNS采用算子分裂有限差分方法求解Navier- Stokes方程。当正则化参数δ = 0.2, 0.1, 0.05时,采用正则化涡片法计算无粘流动,在板边缘施加非定常Kutta条件。我们给出了粘性涡量等值线,并比较了两种方法得到的条纹线和流线。随着Re的增大和δ的减小,分离的螺旋条纹和棚子环流的大尺度特征吻合较好。当倾角α较小时,板下风侧的二次分离引入了黏性流动的小尺度特征,而这在非黏性模型中是不存在的。涡旋片模型比黏性DNS模型成本低得多,但由于忽略了黏性流动中存在的边界层而受到限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信