On the Analysis of Chatter in Mechanical Systems with Impacts

Harry Dankowicz, Erika Fotsch
{"title":"On the Analysis of Chatter in Mechanical Systems with Impacts","authors":"Harry Dankowicz,&nbsp;Erika Fotsch","doi":"10.1016/j.piutam.2017.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>In rigid-body mechanics, models that capture collisional contact as an instantaneous exchange of momentum may exhibit dynamics that include infinite sequences of impacts accumulating in finite time to a state of persistent contact, often referred to as chatter. In this paper, we review theoretical tools for the analysis of transient and steady-state behavior in the vicinity of critical periodic orbits for which chatter terminates at a point corresponding to the imminent release from persistent contact, and illustrate the application of this theory to a simplified model of a mechanical pressure relief valve. A general theory for single-degree-of-freedom impact oscillators, previously described in an unpublished manuscript by Nordmark and Kisitu<sup>1</sup>, is shown to yield both qualitative and quantitative agreement with model simulation results. The predicted bifurcation structure shows that the border orbit unfolds supercritically into a universal cascade of local attractors with nontrivial scaling relationships.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"20 ","pages":"Pages 18-25"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2017.03.004","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210983817300056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In rigid-body mechanics, models that capture collisional contact as an instantaneous exchange of momentum may exhibit dynamics that include infinite sequences of impacts accumulating in finite time to a state of persistent contact, often referred to as chatter. In this paper, we review theoretical tools for the analysis of transient and steady-state behavior in the vicinity of critical periodic orbits for which chatter terminates at a point corresponding to the imminent release from persistent contact, and illustrate the application of this theory to a simplified model of a mechanical pressure relief valve. A general theory for single-degree-of-freedom impact oscillators, previously described in an unpublished manuscript by Nordmark and Kisitu1, is shown to yield both qualitative and quantitative agreement with model simulation results. The predicted bifurcation structure shows that the border orbit unfolds supercritically into a universal cascade of local attractors with nontrivial scaling relationships.

有冲击的机械系统颤振分析
在刚体力学中,将碰撞接触捕获为瞬时动量交换的模型可能表现出动力学,包括在有限时间内积累到持续接触状态的无限序列的冲击,通常称为颤振。在本文中,我们回顾了用于分析临界周期轨道附近瞬态和稳态行为的理论工具,其中颤振终止于与持续接触即将释放相对应的点,并说明了该理论在机械减压阀简化模型中的应用。先前由Nordmark和Kisitu1在未发表的手稿中描述的单自由度冲击振荡器的一般理论与模型仿真结果在定性和定量上都一致。预测的分岔结构表明边界轨道在超临界下展开为具有非平凡尺度关系的局部吸引子的普遍级联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信