Diego Mastroeni , Leonidas Chouliaras , Daniel L. Van den Hove , Jennifer Nolz , Bart P.F. Rutten , Elaine Delvaux , Paul D. Coleman.
{"title":"Increased 5-hydroxymethylation levels in the sub ventricular zone of the Alzheimer's brain","authors":"Diego Mastroeni , Leonidas Chouliaras , Daniel L. Van den Hove , Jennifer Nolz , Bart P.F. Rutten , Elaine Delvaux , Paul D. Coleman.","doi":"10.1016/j.nepig.2016.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The subventricular zone (SVZ) is a site of neurogenesis in the aging brain, and epigenetic mechanisms have been implicated in regulating the “normal” distribution of new nerve cells into the existing cellular milieu. In a case-control study of human primary SVZ cultures and fixed tissue from the same individuals, we have found significant increases in DNA hydroxymethylation levels in the SVZ of Alzheimer's disease patients compared with nondiseased control subjects. We show that this increase in hydroxymethylation directly correlates to an increase in cellular proliferation in Alzheimer's disease precursor cells, which implicates the hydroxymethylation tag to a higher degree of cellular proliferation.</p></div>","PeriodicalId":90931,"journal":{"name":"Neuroepigenetics","volume":"6 ","pages":"Pages 26-31"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nepig.2016.04.002","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroepigenetics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214784515300116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The subventricular zone (SVZ) is a site of neurogenesis in the aging brain, and epigenetic mechanisms have been implicated in regulating the “normal” distribution of new nerve cells into the existing cellular milieu. In a case-control study of human primary SVZ cultures and fixed tissue from the same individuals, we have found significant increases in DNA hydroxymethylation levels in the SVZ of Alzheimer's disease patients compared with nondiseased control subjects. We show that this increase in hydroxymethylation directly correlates to an increase in cellular proliferation in Alzheimer's disease precursor cells, which implicates the hydroxymethylation tag to a higher degree of cellular proliferation.