{"title":"Nonconvex penalized ridge estimations for partially linear additive models in ultrahigh dimension","authors":"Mingqiu Wang","doi":"10.1016/j.stamet.2015.03.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span><span>Nonconvex penalties (such as the smoothly clipped absolute deviation penalty and the minimax<span> concave penalty) have some attractive properties including the unbiasedness, continuity and sparsity, and the ridge regression can deal with the </span></span>collinearity problem. Combining the strengths of nonconvex penalties and ridge regression (abbreviated as NPR), we study the oracle selection property of the NPR estimator for high-dimensional partially linear </span>additive models with highly </span>correlated predictors, where the dimensionality of </span>covariates </span><span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is allowed to increase exponentially with the sample size <span><math><mi>n</mi></math></span>. Simulation studies and a real data analysis are carried out to show the performance of the NPR method.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"26 ","pages":"Pages 1-15"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2015.03.001","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312715000180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7
Abstract
Nonconvex penalties (such as the smoothly clipped absolute deviation penalty and the minimax concave penalty) have some attractive properties including the unbiasedness, continuity and sparsity, and the ridge regression can deal with the collinearity problem. Combining the strengths of nonconvex penalties and ridge regression (abbreviated as NPR), we study the oracle selection property of the NPR estimator for high-dimensional partially linear additive models with highly correlated predictors, where the dimensionality of covariates is allowed to increase exponentially with the sample size . Simulation studies and a real data analysis are carried out to show the performance of the NPR method.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.