mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks

IF 3.56 Q1 Medicine
Debangshu Mukherjee, Leixin Miao, Greg Stone, Nasim Alem
{"title":"mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks","authors":"Debangshu Mukherjee,&nbsp;Leixin Miao,&nbsp;Greg Stone,&nbsp;Nasim Alem","doi":"10.1186/s40679-020-0068-y","DOIUrl":null,"url":null,"abstract":"<p>The standard technique for sub-pixel estimation of atom positions from atomic resolution scanning transmission electron microscopy images relies on fitting intensity maxima or minima with a two-dimensional Gaussian function. While this is a widespread method of measurement, it can be error prone in images with non-zero aberrations, strong intensity differences between adjacent atoms or in situations where the neighboring atom positions approach the resolution limit of the microscope. Here we demonstrate <b>mpfit</b>, an atom finding algorithm that iteratively calculates a series of overlapping two-dimensional Gaussian functions to fit the experimental dataset and then subsequently uses a subset of the calculated Gaussian functions to perform sub-pixel refinement of atom positions. Based on both simulated and experimental datasets presented in this work, this approach gives lower errors when compared to the commonly used single Gaussian peak fitting approach and demonstrates increased robustness over a wider range of experimental conditions.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"6 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-020-0068-y","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-020-0068-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 19

Abstract

The standard technique for sub-pixel estimation of atom positions from atomic resolution scanning transmission electron microscopy images relies on fitting intensity maxima or minima with a two-dimensional Gaussian function. While this is a widespread method of measurement, it can be error prone in images with non-zero aberrations, strong intensity differences between adjacent atoms or in situations where the neighboring atom positions approach the resolution limit of the microscope. Here we demonstrate mpfit, an atom finding algorithm that iteratively calculates a series of overlapping two-dimensional Gaussian functions to fit the experimental dataset and then subsequently uses a subset of the calculated Gaussian functions to perform sub-pixel refinement of atom positions. Based on both simulated and experimental datasets presented in this work, this approach gives lower errors when compared to the commonly used single Gaussian peak fitting approach and demonstrates increased robustness over a wider range of experimental conditions.

Abstract Image

mpfit:一个具有多个高斯峰的原子分辨率图像拟合的鲁棒方法
从原子分辨率扫描透射电子显微镜图像亚像素估计原子位置的标准技术依赖于用二维高斯函数拟合强度最大值或最小值。虽然这是一种广泛的测量方法,但在具有非零像差的图像中,相邻原子之间的强强度差异或相邻原子位置接近显微镜分辨率极限的情况下,它可能容易出错。在这里,我们展示了mpfit,一种原子查找算法,它迭代地计算一系列重叠的二维高斯函数来拟合实验数据集,然后使用计算出的高斯函数的子集来执行亚像素原子位置的细化。基于本工作中提供的模拟和实验数据集,与常用的单高斯峰拟合方法相比,该方法的误差更低,并且在更广泛的实验条件下显示出更高的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信