The q-Rung orthopair fuzzy hamacher generalized shapley choquet integral operator and its application to multiattribute decision making

IF 2.3 Q3 MANAGEMENT
Pankaj Kakati , Saifur Rahman
{"title":"The q-Rung orthopair fuzzy hamacher generalized shapley choquet integral operator and its application to multiattribute decision making","authors":"Pankaj Kakati ,&nbsp;Saifur Rahman","doi":"10.1016/j.ejdp.2022.100012","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><mi>q</mi></math></span>-rung orthopair fuzzy sets (<span><math><mi>q</mi></math></span>-ROFs) which are eminent extensions of the intuitionistic fuzzy sets and the pythagorean fuzzy sets can be considered as an efficient tool for modeling real life decision making problems involving uncertainty of information. In this paper, in order to reflect the correlation among the attributes of real decision making problems, the Choquet integral operator is extended to develop the <span><math><mi>q</mi></math></span>-rung orthopair fuzzy Hamacher generalized Shapley Choquet integral (<span><math><mi>q</mi></math></span>-ROFHGSCI) operator under the <span><math><mi>q</mi></math></span>-rung orthopair fuzzy environment. Furthermore, some important properties and special cases of the <span><math><mi>q</mi></math></span>-ROFHGSCI operator are discussed. An approach for multiattribute decision making based on <span><math><mi>q</mi></math></span>-ROFHGSCI operator is developed. Finally, a numerical example is provided to illustrate the proposed approach.</p></div>","PeriodicalId":44104,"journal":{"name":"EURO Journal on Decision Processes","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2193943822000012/pdfft?md5=de4686312e779429f35fd68824043af8&pid=1-s2.0-S2193943822000012-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Decision Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2193943822000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 4

Abstract

The q-rung orthopair fuzzy sets (q-ROFs) which are eminent extensions of the intuitionistic fuzzy sets and the pythagorean fuzzy sets can be considered as an efficient tool for modeling real life decision making problems involving uncertainty of information. In this paper, in order to reflect the correlation among the attributes of real decision making problems, the Choquet integral operator is extended to develop the q-rung orthopair fuzzy Hamacher generalized Shapley Choquet integral (q-ROFHGSCI) operator under the q-rung orthopair fuzzy environment. Furthermore, some important properties and special cases of the q-ROFHGSCI operator are discussed. An approach for multiattribute decision making based on q-ROFHGSCI operator is developed. Finally, a numerical example is provided to illustrate the proposed approach.

q-Rung正交模糊哈马赫广义shapley choquet积分算子及其在多属性决策中的应用
q阶正交模糊集(q-rung orthopair fuzzy set, q-ROFs)是直觉模糊集和毕达哥拉斯模糊集的杰出扩展,可以被认为是建模现实生活中涉及信息不确定性的决策问题的有效工具。为了反映实际决策问题属性之间的相关性,本文对Choquet积分算子进行了扩展,得到了q阶正形模糊环境下的q阶正形模糊Hamacher广义Shapley Choquet积分(q-ROFHGSCI)算子。进一步讨论了q-ROFHGSCI算子的一些重要性质和特殊情况。提出了一种基于q-ROFHGSCI算子的多属性决策方法。最后,给出了一个数值算例来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信