Full-chain modeling and performance analysis of integral imaging three-dimensional display system

IF 1.9 4区 物理与天体物理 Q3 OPTICS
Ying Yuan, Xiaorui Wang, Yang Yang, Hang Yuan, Chao Zhang, Zhenshun Zhao
{"title":"Full-chain modeling and performance analysis of integral imaging three-dimensional display system","authors":"Ying Yuan,&nbsp;Xiaorui Wang,&nbsp;Yang Yang,&nbsp;Hang Yuan,&nbsp;Chao Zhang,&nbsp;Zhenshun Zhao","doi":"10.1186/s41476-020-00134-7","DOIUrl":null,"url":null,"abstract":"<p>The full-chain system performance characterization is very important for the optimization design of an integral imaging three-dimensional (3D) display system. In this paper, the acquisition and display processes of 3D scene will be treated as a complete light field information transmission process. The full-chain performance characterization model of an integral imaging 3D display system is established, which uses the 3D voxel, the image depth, and the field of view of the reconstructed images as the 3D display quality evaluation indicators. Unlike most of the previous research results using the ideal integral imaging model, the proposed full-chain performance characterization model considering the diffraction effect and optical aberration of the microlens array, the sampling effect of the detector, 3D image data scaling, and the human visual system, can accurately describe the actual 3D light field transmission and convergence characteristics. The relationships between key parameters of an integral imaging 3D display system and the 3D display quality evaluation indicators are analyzed and discussed by the simulation experiment. The results will be helpful for the optimization design of a high-quality integral imaging 3D display system.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-020-00134-7","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-020-00134-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 3

Abstract

The full-chain system performance characterization is very important for the optimization design of an integral imaging three-dimensional (3D) display system. In this paper, the acquisition and display processes of 3D scene will be treated as a complete light field information transmission process. The full-chain performance characterization model of an integral imaging 3D display system is established, which uses the 3D voxel, the image depth, and the field of view of the reconstructed images as the 3D display quality evaluation indicators. Unlike most of the previous research results using the ideal integral imaging model, the proposed full-chain performance characterization model considering the diffraction effect and optical aberration of the microlens array, the sampling effect of the detector, 3D image data scaling, and the human visual system, can accurately describe the actual 3D light field transmission and convergence characteristics. The relationships between key parameters of an integral imaging 3D display system and the 3D display quality evaluation indicators are analyzed and discussed by the simulation experiment. The results will be helpful for the optimization design of a high-quality integral imaging 3D display system.

Abstract Image

集成成像三维显示系统全链建模与性能分析
全链系统性能表征对于整体成像三维显示系统的优化设计至关重要。本文将三维场景的采集和显示过程视为一个完整的光场信息传输过程。建立了以三维体素、图像深度和重构图像视场作为三维显示质量评价指标的整体成像三维显示系统全链性能表征模型。与以往大多数研究结果采用理想的积分成像模型不同,本文提出的全链性能表征模型考虑了微透镜阵列的衍射效应和光学像差、探测器的采样效应、三维图像数据的尺度化以及人类视觉系统,能够准确描述实际的三维光场传输和会聚特性。通过仿真实验,分析和讨论了集成成像三维显示系统关键参数与三维显示质量评价指标之间的关系。研究结果将为高质量集成成像三维显示系统的优化设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信