Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral Changes in Male Neonatal Rats.

IF 6.2
Mumin Alper Erdogan, Miray Turk, Gizem Dinler Doganay, Ibrahim Halil Sever, Bahattin Ozkul, Ibrahim Sogut, Ebru Eroglu, Yigit Uyanikgil, Oytun Erbas
{"title":"Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral Changes in Male Neonatal Rats.","authors":"Mumin Alper Erdogan, Miray Turk, Gizem Dinler Doganay, Ibrahim Halil Sever, Bahattin Ozkul, Ibrahim Sogut, Ebru Eroglu, Yigit Uyanikgil, Oytun Erbas","doi":"10.1007/s11481-023-10089-4","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research on placental, embryo, and brain organoids suggests that the COVID-19 virus may potentially affect embryonic organs, including the brain. Given the established link between SARS-CoV-2 spike protein and neuroinflammation, we sought to investigate the effects of exposure to this protein during pregnancy. We divided pregnant rats into three groups: Group 1 received a 1 ml/kg saline solution, Group 2 received 150 μg/kg adjuvant aluminum hydroxide (AAH), and Group 3 received 40 μg/kg spike protein + 150 μg/kg AAH at 10 and 14 days of gestation. On postnatal day 21 (P21), we randomly separated 60 littermates (10 male-female) into control, AAH-exposed, and spike protein-exposed groups. At P50, we conducted behavioral analyses on these mature animals and performed MR spectroscopy. Subsequently, all animals were sacrificed, and their brains were subject to biochemical and histological analysis. Our findings indicate that male rats exposed to the spike protein displayed a higher rate of impaired performance on behavioral studies, including the three-chamber social test, passive avoidance learning analysis, open field test, rotarod test, and novelty-induced cultivation behavior, indicative of autistic symptoms. Exposure to the spike protein (male) induced gliosis and neuronal cell death in the CA1-CA3 regions of the hippocampus and cerebellum. The spike protein-exposed male rats exhibited significantly greater levels of malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and lactate and lower levels of brain-derived neurotrophic factor (BDNF) than the control group. Our study suggests a potential association between prenatal exposure to COVID-19 spike protein and neurodevelopmental problems, such as ASD. These findings highlight the importance of further research into the potential effects of the COVID-19 virus on embryonic and fetal development and the potential long-term consequences for neurodevelopment.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"573-591"},"PeriodicalIF":6.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-023-10089-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research on placental, embryo, and brain organoids suggests that the COVID-19 virus may potentially affect embryonic organs, including the brain. Given the established link between SARS-CoV-2 spike protein and neuroinflammation, we sought to investigate the effects of exposure to this protein during pregnancy. We divided pregnant rats into three groups: Group 1 received a 1 ml/kg saline solution, Group 2 received 150 μg/kg adjuvant aluminum hydroxide (AAH), and Group 3 received 40 μg/kg spike protein + 150 μg/kg AAH at 10 and 14 days of gestation. On postnatal day 21 (P21), we randomly separated 60 littermates (10 male-female) into control, AAH-exposed, and spike protein-exposed groups. At P50, we conducted behavioral analyses on these mature animals and performed MR spectroscopy. Subsequently, all animals were sacrificed, and their brains were subject to biochemical and histological analysis. Our findings indicate that male rats exposed to the spike protein displayed a higher rate of impaired performance on behavioral studies, including the three-chamber social test, passive avoidance learning analysis, open field test, rotarod test, and novelty-induced cultivation behavior, indicative of autistic symptoms. Exposure to the spike protein (male) induced gliosis and neuronal cell death in the CA1-CA3 regions of the hippocampus and cerebellum. The spike protein-exposed male rats exhibited significantly greater levels of malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and lactate and lower levels of brain-derived neurotrophic factor (BDNF) than the control group. Our study suggests a potential association between prenatal exposure to COVID-19 spike protein and neurodevelopmental problems, such as ASD. These findings highlight the importance of further research into the potential effects of the COVID-19 virus on embryonic and fetal development and the potential long-term consequences for neurodevelopment.

Abstract Image

产前严重急性呼吸系统综合征冠状病毒2型刺突蛋白暴露诱导雄性新生大鼠自闭症样神经行为变化。
最近对胎盘、胚胎和大脑类器官的研究表明,新冠肺炎病毒可能会影响包括大脑在内的胚胎器官。鉴于严重急性呼吸系统综合征冠状病毒2型刺突蛋白与神经炎症之间的既定联系,我们试图研究妊娠期间接触该蛋白的影响。我们将怀孕大鼠分为三组:第一组接受1ml/kg盐水溶液,第二组接受150μg/kg佐剂氢氧化铝(AAH),第三组接受40μg/kg刺突蛋白 + 150μg/kg AAH。在出生后第21天(P21),我们将60只同窝出生的配偶(10只雄性雌性)随机分为对照组、AAH暴露组和刺突蛋白暴露组。在P50时,我们对这些成熟动物进行了行为分析,并进行了MR波谱分析。随后,处死所有动物,并对其大脑进行生化和组织学分析。我们的研究结果表明,暴露于刺突蛋白的雄性大鼠在行为研究中表现出更高的表现受损率,包括三室社交测试、被动回避学习分析、开放场地测试、旋转棒测试和新奇诱导的培养行为,这些都表明了自闭症症状。暴露于刺突蛋白(雄性)诱导海马和小脑CA1-CA3区域的胶质细胞增生和神经元细胞死亡。与对照组相比,暴露于刺突蛋白的雄性大鼠表现出显著更高的丙二醛(MDA)、肿瘤坏死因子α(TNF-α)、白细胞介素17(IL-17)、核因子κB(NF-κB)和乳酸水平,以及更低的脑源性神经营养因子(BDNF)水平。我们的研究表明,产前接触新冠肺炎刺突蛋白与ASD等神经发育问题之间存在潜在关联。这些发现强调了进一步研究新冠肺炎病毒对胚胎和胎儿发育的潜在影响以及对神经发育的潜在长期影响的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信