Quantitative structure-property relationship modelling for predicting retention indices of essential oils based on an improved horse herd optimization algorithm.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY
A M Alharthi, D H Kadir, A M Al-Fakih, Z Y Algamal, N A Al-Thanoon, M K Qasim
{"title":"Quantitative structure-property relationship modelling for predicting retention indices of essential oils based on an improved horse herd optimization algorithm.","authors":"A M Alharthi,&nbsp;D H Kadir,&nbsp;A M Al-Fakih,&nbsp;Z Y Algamal,&nbsp;N A Al-Thanoon,&nbsp;M K Qasim","doi":"10.1080/1062936X.2023.2261855","DOIUrl":null,"url":null,"abstract":"<p><p>The horse herd optimization algorithm (HOA), one of the more contemporary metaheuristic algorithms, has demonstrated superior performance in a number of challenging optimization tasks. In the present work, the descriptor selection issue is resolved by classifying different essential oil retention indices using the binary form, BHOA. Based on internal and external prediction criteria, Z-shape transfer functions (ZTF) were tested to verify their efficiency in improving BHOA performance in QSPR modelling for predicting retention indices of essential oils. The evaluation criteria involved the mean-squared error of the training and testing datasets (MSE), and leave-one-out internal and external validation (<i>Q</i><sup>2</sup>). The degree of convergence of the proposed Z-shaped transfer functions was compared. In addition, K-fold cross validation with k = 5 was applied. The results show that ZTF, especially ZTF1, greatly improves the performance of the original BHOA. Comparatively speaking, ZTF, especially ZTF1, exhibits the fastest convergence behaviour of the binary algorithms. It chooses the fewest descriptors and requires the fewest iterations to achieve excellent prediction performance.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"831-846"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2261855","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The horse herd optimization algorithm (HOA), one of the more contemporary metaheuristic algorithms, has demonstrated superior performance in a number of challenging optimization tasks. In the present work, the descriptor selection issue is resolved by classifying different essential oil retention indices using the binary form, BHOA. Based on internal and external prediction criteria, Z-shape transfer functions (ZTF) were tested to verify their efficiency in improving BHOA performance in QSPR modelling for predicting retention indices of essential oils. The evaluation criteria involved the mean-squared error of the training and testing datasets (MSE), and leave-one-out internal and external validation (Q2). The degree of convergence of the proposed Z-shaped transfer functions was compared. In addition, K-fold cross validation with k = 5 was applied. The results show that ZTF, especially ZTF1, greatly improves the performance of the original BHOA. Comparatively speaking, ZTF, especially ZTF1, exhibits the fastest convergence behaviour of the binary algorithms. It chooses the fewest descriptors and requires the fewest iterations to achieve excellent prediction performance.

基于改进的马群优化算法的预测精油保留指数的定量结构-性质关系模型。
马群优化算法(HOA)是当代的元启发式算法之一,在许多具有挑战性的优化任务中表现出了优异的性能。在本工作中,描述符选择问题是通过使用二进制形式BHOA对不同的精油保留指数进行分类来解决的。基于内部和外部预测标准,测试了Z形传递函数(ZTF),以验证其在预测精油保留指数的QSPR模型中提高BHOA性能的有效性。评估标准涉及训练和测试数据集的均方误差(MSE),并省略了一个内部和外部验证(Q2)。比较了所提出的Z形传递函数的收敛程度。此外,K折叠交叉验证 = 5。结果表明,ZTF,特别是ZTF1,大大提高了原BHOA的性能。相比之下,ZTF,尤其是ZTF1,表现出了二进制算法中最快的收敛行为。它选择最少的描述符,并且需要最少的迭代来实现出色的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信