{"title":"An investigation into failure analysis of interfering part of a steam turbine journal bearing","authors":"M. Mehdizadeh , F. Khodabakhshi","doi":"10.1016/j.csefa.2014.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Journal bearings as so sensitive parts of steam turbines are very susceptible to failure through different mechanisms of wear, fatigue and crush during service conditions. Failure occurring through these mechanisms lead to turbine completely shut down as a result of interfering in working conditions of bearing different parts. In this research, failed interfered part of a journal bearing related to a 320,000<!--> <!-->kW steam turbine was examined. Failure analysis investigations were performed by utilizing of stereographic, optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) analysis and hardness test. Surface crush, large amounts of surface cracks, no noticeable changes of failed surface chemical composition and microstructure with significant hardness improvement were the main obtained results. The studies were revealed that the bearing part loosing and inappropriate clearance can produce relative displacements under cyclic gradient loading. This condition was detrimental for the service life of turbine journal bearing via failure through fretting fatigue mechanism.</p></div>","PeriodicalId":91224,"journal":{"name":"Case studies in engineering failure analysis","volume":"2 2","pages":"Pages 61-68"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csefa.2014.04.001","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case studies in engineering failure analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213290214000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Journal bearings as so sensitive parts of steam turbines are very susceptible to failure through different mechanisms of wear, fatigue and crush during service conditions. Failure occurring through these mechanisms lead to turbine completely shut down as a result of interfering in working conditions of bearing different parts. In this research, failed interfered part of a journal bearing related to a 320,000 kW steam turbine was examined. Failure analysis investigations were performed by utilizing of stereographic, optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) analysis and hardness test. Surface crush, large amounts of surface cracks, no noticeable changes of failed surface chemical composition and microstructure with significant hardness improvement were the main obtained results. The studies were revealed that the bearing part loosing and inappropriate clearance can produce relative displacements under cyclic gradient loading. This condition was detrimental for the service life of turbine journal bearing via failure through fretting fatigue mechanism.