An efficient solution algorithm for boundary element equations

JoséL. Ortiz, C.V. Girija Vallabhan
{"title":"An efficient solution algorithm for boundary element equations","authors":"JoséL. Ortiz,&nbsp;C.V. Girija Vallabhan","doi":"10.1016/0961-3552(91)90017-X","DOIUrl":null,"url":null,"abstract":"<div><p>Boundary element techniques result in the solution of a linear system of equations of the type HU = GQ + B, which can be transformed into a system of equations of the type AX = F. The coefficient matrix A requires the storage of a full matrix on the computer. This storage requirement, of the order of <em>n</em><sup>*</sup><em>n</em> memory positions (<em>n</em> = number of equations), for a very large <em>n</em> is often considered negative for the boundary element method. Here, two algorithms are presented where the memory requirements to solve the system are only <em>n</em><sup>*</sup>(<em>n</em> - 1)/2 and <em>n</em><sup>*</sup><em>n</em>/4 respectively. The algorithms do not necessitate any external storage devices nor do they increase the computational efforts.</p></div>","PeriodicalId":100044,"journal":{"name":"Advances in Engineering Software and Workstations","volume":"13 4","pages":"Pages 197-205"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-3552(91)90017-X","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software and Workstations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096135529190017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Boundary element techniques result in the solution of a linear system of equations of the type HU = GQ + B, which can be transformed into a system of equations of the type AX = F. The coefficient matrix A requires the storage of a full matrix on the computer. This storage requirement, of the order of n*n memory positions (n = number of equations), for a very large n is often considered negative for the boundary element method. Here, two algorithms are presented where the memory requirements to solve the system are only n*(n - 1)/2 and n*n/4 respectively. The algorithms do not necessitate any external storage devices nor do they increase the computational efforts.

边界元方程的有效求解算法
边界元技术的结果是求解类型为HU = GQ + B的线性方程组,该方程组可以转化为类型为AX = f的方程组。系数矩阵a需要在计算机上存储一个完整的矩阵。对于非常大的n,这种存储要求(n *n个存储位置(n =方程的数量))通常被认为是边界元法的负值。本文提出了两种算法,求解系统的内存要求分别为n*(n - 1)/2和n*n/4。该算法不需要任何外部存储设备,也不会增加计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信