A semi-numerical approach to the buckling and post-buckling solution of plate

P.W. Khong, Michael W.S. Lau, Y.W. Chan
{"title":"A semi-numerical approach to the buckling and post-buckling solution of plate","authors":"P.W. Khong,&nbsp;Michael W.S. Lau,&nbsp;Y.W. Chan","doi":"10.1016/0961-3552(91)90003-M","DOIUrl":null,"url":null,"abstract":"<div><p>In this semi-numerical approach to buckling of plates, a combination of polynomial and trigonometric functions are used as displacement functions in the Rayleigh-Ritz method. It is shown that a variety of loading and boundary conditions can be handled using simple variation of the trigonometric function proposed here. A two-dimensional plate buckling problem is therefore reduced to selecting one of the set of trigonometric function shown. The buckling coefficient values are then computed as eigenvalues of the stiffness and geometric matrix pair. These values compare well with available analytical and numerical approach solutions. The approach can also be extended to post buckling analysis using the eigenvectors found.</p></div>","PeriodicalId":100044,"journal":{"name":"Advances in Engineering Software and Workstations","volume":"13 3","pages":"Pages 123-129"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-3552(91)90003-M","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software and Workstations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096135529190003M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this semi-numerical approach to buckling of plates, a combination of polynomial and trigonometric functions are used as displacement functions in the Rayleigh-Ritz method. It is shown that a variety of loading and boundary conditions can be handled using simple variation of the trigonometric function proposed here. A two-dimensional plate buckling problem is therefore reduced to selecting one of the set of trigonometric function shown. The buckling coefficient values are then computed as eigenvalues of the stiffness and geometric matrix pair. These values compare well with available analytical and numerical approach solutions. The approach can also be extended to post buckling analysis using the eigenvectors found.

板屈曲和后屈曲解的半数值方法
在这种半数值方法中,用多项式函数和三角函数的组合作为瑞利-里兹法中的位移函数。结果表明,利用本文提出的三角函数的简单变分,可以处理各种载荷和边界条件。因此,二维板屈曲问题可简化为从所示的一组三角函数中选择一个。然后计算屈曲系数值为刚度和几何矩阵对的特征值。这些值与现有的解析解和数值解比较良好。该方法还可以扩展到使用所发现的特征向量的后屈曲分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信