{"title":"Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni","authors":"Bryan Kuhr , Diana Farkas , Ian M. Robertson","doi":"10.1016/j.commatsci.2016.05.014","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The effect of hydrogen in the grain boundary on the mechanical response of random microstructures was studied by using atomistic simulation techniques and model </span>interatomic potentials<span><span>. The model interatomic potentials mimic properties of interstitial H in </span>fcc materials<span> within the limitations of empirical force laws. We report fully three-dimensional atomistic molecular dynamics studies of the mechanical response of identical samples with and without H in the grain boundaries. H content changes the structure of the grain boundaries and plays a critical role in the emission of dislocations from the grain boundaries under an applied stress. For lower deformation levels, the presence of H increased the yield strength of the samples, whereas for higher deformation levels, it increased dislocation emission from grain boundary sources, resulting in an increase in the number of dislocations in pile-ups at the grain boundaries. Increasing the H content resulted in increasingly larger cracks being formed on the grain boundaries, consistent with decreased grain boundary cohesion. Our results support a picture of </span></span></span>hydrogen embrittlement<span> resulting from the combined effects of hydrogen on plasticity as well as grain boundary decohesion.</span></p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"122 ","pages":"Pages 92-101"},"PeriodicalIF":3.3000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.commatsci.2016.05.014","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025616302385","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 38
Abstract
The effect of hydrogen in the grain boundary on the mechanical response of random microstructures was studied by using atomistic simulation techniques and model interatomic potentials. The model interatomic potentials mimic properties of interstitial H in fcc materials within the limitations of empirical force laws. We report fully three-dimensional atomistic molecular dynamics studies of the mechanical response of identical samples with and without H in the grain boundaries. H content changes the structure of the grain boundaries and plays a critical role in the emission of dislocations from the grain boundaries under an applied stress. For lower deformation levels, the presence of H increased the yield strength of the samples, whereas for higher deformation levels, it increased dislocation emission from grain boundary sources, resulting in an increase in the number of dislocations in pile-ups at the grain boundaries. Increasing the H content resulted in increasingly larger cracks being formed on the grain boundaries, consistent with decreased grain boundary cohesion. Our results support a picture of hydrogen embrittlement resulting from the combined effects of hydrogen on plasticity as well as grain boundary decohesion.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.