D. V. Golubenko, P. A. Yurova, A. V. Desyatov, I. A. Stenina, S. A. Kosarev, A. B. Yaroslavtsev
{"title":"Pore Filled Ion-Conducting Materials Based on Track-Etched Membranes and Sulfonated Polystyrene","authors":"D. V. Golubenko, P. A. Yurova, A. V. Desyatov, I. A. Stenina, S. A. Kosarev, A. B. Yaroslavtsev","doi":"10.1134/S2517751622060026","DOIUrl":null,"url":null,"abstract":"<p>Synthesis of proton-conducting materials based on track-etched membranes from polyvinylidene fluoride and sulfonated cross-linked polystyrene is described. The synthesis has been carried out by filling the pores of the original or gamma-irradiated track-etched membrane by copolymerization of styrene/divinylbenzene followed by sulfonation of polystyrene with chlorosulfonic acid. The resulting membranes have been studied by scanning electron microscopy and ATR IR spectroscopy. Membrane ionic conductivity, hydrogen gas permeability, ion-exchange capacity, and water absorption were measured. The ionic conductivity at 30°C reaches 51.7 mS/cm, which is almost three times higher than for Nafion®212 membranes; however, the gas permeability of the obtained materials also increases simultaneously.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 6","pages":"398 - 403"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S2517751622060026.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622060026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Synthesis of proton-conducting materials based on track-etched membranes from polyvinylidene fluoride and sulfonated cross-linked polystyrene is described. The synthesis has been carried out by filling the pores of the original or gamma-irradiated track-etched membrane by copolymerization of styrene/divinylbenzene followed by sulfonation of polystyrene with chlorosulfonic acid. The resulting membranes have been studied by scanning electron microscopy and ATR IR spectroscopy. Membrane ionic conductivity, hydrogen gas permeability, ion-exchange capacity, and water absorption were measured. The ionic conductivity at 30°C reaches 51.7 mS/cm, which is almost three times higher than for Nafion®212 membranes; however, the gas permeability of the obtained materials also increases simultaneously.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.