A Review on Synthesis and Transformation of Ethanol into Olefins Using Various Catalysts

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
Nabila Tabassum, Syed Saif Ali
{"title":"A Review on Synthesis and Transformation of Ethanol into Olefins Using Various Catalysts","authors":"Nabila Tabassum,&nbsp;Syed Saif Ali","doi":"10.1007/s10563-021-09348-2","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past couple of years, fossil fuel consumption has been increased significantly. Today the consumption of coal, natural gas, and oil is rising continuously worldwide. In contrast to fossil fuels, biofuels can be advantageous because of their eco-friendly behavior with the environment. Ethanol is the “green” substitute for gasoline, as it can be blended with gasoline or can be used for the production of lighter olefins (ethylene and propylene). Ethanol can be produced either by fermentation or by catalytic route from various sources such as sugar/starchy material, carbon dioxide, carbon monoxide, and dimethylether. The catalytic route has emerged as the better route compared to fermentation due to the requirement of a large number of crops which is generally not suitable for every country. The study of ethanol synthesis and the catalytic transformation of ethanol to lighter olefins such as ethylene and propylene is presented in this review. The effect of catalysts such as zirconia, alumina, and zeolites in the ethanol transformation to olefins has been discussed in detail.</p><h3>Graphic Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"26 4","pages":"261 - 280"},"PeriodicalIF":2.1000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-021-09348-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Over the past couple of years, fossil fuel consumption has been increased significantly. Today the consumption of coal, natural gas, and oil is rising continuously worldwide. In contrast to fossil fuels, biofuels can be advantageous because of their eco-friendly behavior with the environment. Ethanol is the “green” substitute for gasoline, as it can be blended with gasoline or can be used for the production of lighter olefins (ethylene and propylene). Ethanol can be produced either by fermentation or by catalytic route from various sources such as sugar/starchy material, carbon dioxide, carbon monoxide, and dimethylether. The catalytic route has emerged as the better route compared to fermentation due to the requirement of a large number of crops which is generally not suitable for every country. The study of ethanol synthesis and the catalytic transformation of ethanol to lighter olefins such as ethylene and propylene is presented in this review. The effect of catalysts such as zirconia, alumina, and zeolites in the ethanol transformation to olefins has been discussed in detail.

Graphic Abstract

Abstract Image

不同催化剂合成及转化乙醇烯烃的研究进展
在过去的几年里,化石燃料的消耗显著增加。今天,煤炭、天然气和石油的消费量在全球范围内不断上升。与化石燃料相比,生物燃料可能是有利的,因为它们对环境的友好行为。乙醇是汽油的“绿色”替代品,因为它可以与汽油混合或用于生产较轻的烯烃(乙烯和丙烯)。乙醇可以通过发酵或催化途径从各种来源如糖/淀粉材料、二氧化碳、一氧化碳和二甲基醚生产。由于大量作物的需求,催化途径已成为比发酵途径更好的途径,而这通常并不适合每个国家。综述了乙醇合成及催化转化为乙烯、丙烯等轻质烯烃的研究进展。详细讨论了氧化锆、氧化铝和沸石等催化剂在乙醇转化成烯烃中的作用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信