ARMAX modelling and state estimation of an enzyme fermentation process

P. Linko, P. Rauman-Aalto , S. Möller , R.J. Aarts , U. Kortela
{"title":"ARMAX modelling and state estimation of an enzyme fermentation process","authors":"P. Linko,&nbsp;P. Rauman-Aalto ,&nbsp;S. Möller ,&nbsp;R.J. Aarts ,&nbsp;U. Kortela","doi":"10.1016/0300-9467(92)80027-8","DOIUrl":null,"url":null,"abstract":"<div><p>The suitability of input/output models for state estimation of fermentation processes has been investigated. A batch glucoamylase fermentation provides an example and a relatively simple ARMAX model was used to estimate, on-line, both the enzyme activity and the biomass concentration from ammonia addition and carbon dioxide evolution measurements, respectively. The model parameters were estimated by the recursive least-squares method. Model fit and estimator performance were improved by signal conditioning. The estimator was capable of estimating the state of the process starting from the same initial parameter values and off-line measurements could be used readily for updating the estimator parameters thereby further improving the estimator performance.</p></div>","PeriodicalId":101225,"journal":{"name":"The Chemical Engineering Journal","volume":"50 3","pages":"Pages B45-B49"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0300-9467(92)80027-8","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Chemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0300946792800278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The suitability of input/output models for state estimation of fermentation processes has been investigated. A batch glucoamylase fermentation provides an example and a relatively simple ARMAX model was used to estimate, on-line, both the enzyme activity and the biomass concentration from ammonia addition and carbon dioxide evolution measurements, respectively. The model parameters were estimated by the recursive least-squares method. Model fit and estimator performance were improved by signal conditioning. The estimator was capable of estimating the state of the process starting from the same initial parameter values and off-line measurements could be used readily for updating the estimator parameters thereby further improving the estimator performance.

酶发酵过程的ARMAX建模与状态估计
研究了输入/输出模型在发酵过程状态估计中的适用性。以批量葡萄糖淀粉酶发酵为例,利用相对简单的ARMAX模型,分别在线估算了氨添加量和二氧化碳释放量对酶活性和生物量的影响。采用递推最小二乘法对模型参数进行估计。通过信号调节提高了模型拟合和估计器的性能。估计器能够从相同的初始参数值开始估计过程的状态,并且离线测量可以很容易地用于更新估计器参数,从而进一步提高估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信