An application of Bayesian nonlinear regression to hydrologic models

George Kuczera
{"title":"An application of Bayesian nonlinear regression to hydrologic models","authors":"George Kuczera","doi":"10.1016/0141-1195(89)90044-2","DOIUrl":null,"url":null,"abstract":"<div><p>A suite of FORTRAN 77 computer programs implementing Bayesian nonlinear regression is described. These programs, developed to cope with complex hydrologic models, are used to infer model parameters, test model structure and make predictions of future response. The programs are fully interactive with features including: interactive parameter optimization using the Gauss-Marquardt algorithm; run-time editing of user options; availability of a general error model; use of prior information; and joint fitting of multiple-response data.</p></div>","PeriodicalId":100043,"journal":{"name":"Advances in Engineering Software (1978)","volume":"11 3","pages":"Pages 149-155"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0141-1195(89)90044-2","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software (1978)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0141119589900442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A suite of FORTRAN 77 computer programs implementing Bayesian nonlinear regression is described. These programs, developed to cope with complex hydrologic models, are used to infer model parameters, test model structure and make predictions of future response. The programs are fully interactive with features including: interactive parameter optimization using the Gauss-Marquardt algorithm; run-time editing of user options; availability of a general error model; use of prior information; and joint fitting of multiple-response data.

贝叶斯非线性回归在水文模型中的应用
介绍了一套实现贝叶斯非线性回归的FORTRAN 77计算机程序。这些程序是为了应对复杂的水文模型而开发的,用于推断模型参数、测试模型结构和预测未来的响应。该程序具有完全交互的功能,包括:使用高斯-马夸特算法进行交互参数优化;用户选项的运行时编辑;通用误差模型的可用性;使用先验信息;多响应数据的联合拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信