A unified subroutine for the solution of 2-D and 3-D axisymmetric diffusion equation

Choh-Fei Yeap, John A. Pearce
{"title":"A unified subroutine for the solution of 2-D and 3-D axisymmetric diffusion equation","authors":"Choh-Fei Yeap,&nbsp;John A. Pearce","doi":"10.1016/0141-1195(89)90041-7","DOIUrl":null,"url":null,"abstract":"<div><p>A unified numerical statement, which composes Galerkin finite element, subdomain finite element, finite control-volume, balanced finite difference and other numerical approximations for 2-D and 3-D axisymmetric <em>C</em><em>ϖT</em>/<em>ϖt</em> = <em>Δ</em> · (<em>KϖT</em>) + <em>λT</em> + <em>F</em>, was derived and formulated. The numerical statement yields Galerkin finite element, subdomain finite element, and balanced finite difference approximations by specifying a single constant, η, to 2,3 and ∞ respectively (finite control-volume approximation by lumping capacitance matrix of the subdomain finite element method). Techniques are also presented to illustrate selection of input parameters to UniSub, a Fortran implementation of the unified numerical statement, to generate correct matrix systems for the governing equation and various boundary conditions. Test problems were run to check the validity of the subroutine and to compare accuracy of various numerical schemes.</p><p>UniSub is a powerful tool to compare the accuracy of various numerical schemes since it eliminates the uncertainty of effects between codes used for comparison. UniSub can also be employed in a Fortran program to produce different numerical schemes by varying η both spatially and temporarily to achieve optimal accuracy in solving diffusion equation.</p></div>","PeriodicalId":100043,"journal":{"name":"Advances in Engineering Software (1978)","volume":"11 3","pages":"Pages 118-127"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0141-1195(89)90041-7","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software (1978)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0141119589900417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A unified numerical statement, which composes Galerkin finite element, subdomain finite element, finite control-volume, balanced finite difference and other numerical approximations for 2-D and 3-D axisymmetric CϖT/ϖt = Δ · (KϖT) + λT + F, was derived and formulated. The numerical statement yields Galerkin finite element, subdomain finite element, and balanced finite difference approximations by specifying a single constant, η, to 2,3 and ∞ respectively (finite control-volume approximation by lumping capacitance matrix of the subdomain finite element method). Techniques are also presented to illustrate selection of input parameters to UniSub, a Fortran implementation of the unified numerical statement, to generate correct matrix systems for the governing equation and various boundary conditions. Test problems were run to check the validity of the subroutine and to compare accuracy of various numerical schemes.

UniSub is a powerful tool to compare the accuracy of various numerical schemes since it eliminates the uncertainty of effects between codes used for comparison. UniSub can also be employed in a Fortran program to produce different numerical schemes by varying η both spatially and temporarily to achieve optimal accuracy in solving diffusion equation.

二维和三维轴对称扩散方程解的统一子程序
导出了二维和三维轴对称结构的Galerkin有限元、子域有限元、有限控制体积、平衡有限差分等数值近似的统一数值表达式CϖT/ϖt = Δ·(KϖT) + λT + F。数值表达式通过分别指定单个常数η为2、3和∞,得到Galerkin有限元、子域有限元和平衡有限差分近似(子域有限元方法的集总电容矩阵的有限控制-体积近似)。此外,本文还介绍了为统一数值表达式的Fortran实现UniSub选择输入参数的技术,以便为控制方程和各种边界条件生成正确的矩阵系统。为了验证子程序的有效性和比较各种数值格式的精度,运行了测试问题。UniSub是比较各种数值方案精度的强大工具,因为它消除了用于比较的代码之间影响的不确定性。UniSub还可以在Fortran程序中通过改变空间和临时η来产生不同的数值格式,以达到求解扩散方程的最佳精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信