Poisson noise removal from high-resolution STEM images based on periodic block matching

IF 3.56 Q1 Medicine
Niklas Mevenkamp, Peter Binev, Wolfgang Dahmen, Paul M Voyles, Andrew B Yankovich, Benjamin Berkels
{"title":"Poisson noise removal from high-resolution STEM images based on periodic block matching","authors":"Niklas Mevenkamp,&nbsp;Peter Binev,&nbsp;Wolfgang Dahmen,&nbsp;Paul M Voyles,&nbsp;Andrew B Yankovich,&nbsp;Benjamin Berkels","doi":"10.1186/s40679-015-0004-8","DOIUrl":null,"url":null,"abstract":"<p>Scanning transmission electron microscopy (STEM) provides sub-?ngstrom, atomic resolution images of crystalline structures. However, in many applications, the ability to extract information such as atom positions, from such electron micrographs, is severely obstructed by low signal-to-noise ratios of the acquired images resulting from necessary limitations to the electron dose. We present a denoising strategy tailored to the special features of atomic-resolution electron micrographs of crystals limited by Poisson noise based on the block-matching and 3D-filtering (BM3D) algorithm by Dabov et al. We also present an economized block-matching strategy that exploits the periodic structure of the observed crystals. On simulated single-shot STEM images of inorganic materials, with incident electron doses below 4 C/cm <sup>2</sup>, our new method achieves precisions of 7 to 15 pm and an increase in peak signal-to-noise ratio (PSNR) of 15 to 20 dB compared to noisy images and 2 to 4 dB compared to images denoised with the original BM3D.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"1 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-015-0004-8","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-015-0004-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 38

Abstract

Scanning transmission electron microscopy (STEM) provides sub-?ngstrom, atomic resolution images of crystalline structures. However, in many applications, the ability to extract information such as atom positions, from such electron micrographs, is severely obstructed by low signal-to-noise ratios of the acquired images resulting from necessary limitations to the electron dose. We present a denoising strategy tailored to the special features of atomic-resolution electron micrographs of crystals limited by Poisson noise based on the block-matching and 3D-filtering (BM3D) algorithm by Dabov et al. We also present an economized block-matching strategy that exploits the periodic structure of the observed crystals. On simulated single-shot STEM images of inorganic materials, with incident electron doses below 4 C/cm 2, our new method achieves precisions of 7 to 15 pm and an increase in peak signal-to-noise ratio (PSNR) of 15 to 20 dB compared to noisy images and 2 to 4 dB compared to images denoised with the original BM3D.

Abstract Image

基于周期块匹配的高分辨率STEM图像泊松噪声去除
扫描透射电子显微镜(STEM)提供亚?晶体结构的原子分辨率图像。然而,在许多应用中,从这样的电子显微照片中提取诸如原子位置等信息的能力,由于电子剂量的必要限制所获得的图像的低信噪比而受到严重阻碍。我们提出了一种基于Dabov等人的块匹配和3d滤波(BM3D)算法的去噪策略,以适应受泊松噪声限制的原子分辨率晶体电子显微图的特殊特征。我们还提出了一种利用所观察晶体的周期性结构的节约型块匹配策略。在模拟无机材料的单次STEM图像上,当入射电子剂量低于4 C/ cm2时,我们的新方法实现了7至15 pm的精度,与噪声图像相比,峰值信噪比(PSNR)提高了15至20 dB,与原始BM3D去噪图像相比,峰值信噪比提高了2至4 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信