N. Mihalopoulos, B. Bonsang, B.C. Nguyen, M. Kanakidou, S. Belviso
{"title":"Field observations of carbonyl sulfide deficit near the ground: Possible implication of vegetation","authors":"N. Mihalopoulos, B. Bonsang, B.C. Nguyen, M. Kanakidou, S. Belviso","doi":"10.1016/0004-6981(89)90177-7","DOIUrl":null,"url":null,"abstract":"<div><p>In order to study carbonyl sulfide sources and sinks at ground level, two experiments were conducted in 1986 during temperature inversion events. In the first experiment, the samples were collected in a coastal area during land-breeze events. In the second experiment, COS vertical profiles were carried out in an agricultural area, within and above an inversion layer near the ground. Both stable atmospheric situations resulted in a deficit of COS near the ground which is attributed to the existence of a sink of COS at this level. Deposition onto vegetation seems to be the most likely mechanism for this COS uptake, a conclusion in agreement with the results of laboratory and soil flux chambers experiments.</p></div>","PeriodicalId":100138,"journal":{"name":"Atmospheric Environment (1967)","volume":"23 10","pages":"Pages 2159-2166"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0004-6981(89)90177-7","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment (1967)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0004698189901777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
In order to study carbonyl sulfide sources and sinks at ground level, two experiments were conducted in 1986 during temperature inversion events. In the first experiment, the samples were collected in a coastal area during land-breeze events. In the second experiment, COS vertical profiles were carried out in an agricultural area, within and above an inversion layer near the ground. Both stable atmospheric situations resulted in a deficit of COS near the ground which is attributed to the existence of a sink of COS at this level. Deposition onto vegetation seems to be the most likely mechanism for this COS uptake, a conclusion in agreement with the results of laboratory and soil flux chambers experiments.