Entwined Modules Over Representations of Categories

Pub Date : 2023-05-22 DOI:10.1007/s10468-023-10203-3
Abhishek Banerjee
{"title":"Entwined Modules Over Representations of Categories","authors":"Abhishek Banerjee","doi":"10.1007/s10468-023-10203-3","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a theory of modules over a representation of a small category taking values in entwining structures over a semiperfect coalgebra. This takes forward the aim of developing categories of entwined modules to the same extent as that of module categories as well as the philosophy of Mitchell of working with rings with several objects. The representations are motivated by work of Estrada and Virili, who developed a theory of modules over a representation taking values in small preadditive categories, which were then studied in the same spirit as sheaves of modules over a scheme. We also describe, by means of Frobenius and separable functors, how our theory relates to that of modules over the underlying representation taking values in small <i>K</i>-linear categories.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10203-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a theory of modules over a representation of a small category taking values in entwining structures over a semiperfect coalgebra. This takes forward the aim of developing categories of entwined modules to the same extent as that of module categories as well as the philosophy of Mitchell of working with rings with several objects. The representations are motivated by work of Estrada and Virili, who developed a theory of modules over a representation taking values in small preadditive categories, which were then studied in the same spirit as sheaves of modules over a scheme. We also describe, by means of Frobenius and separable functors, how our theory relates to that of modules over the underlying representation taking values in small K-linear categories.

分享
查看原文
类别表示之上的缠绕模块
我们介绍了一种在半完全代数的缠结结构中取值的小范畴表示上的模块理论。这一理论的目标是发展与模块范畴相同程度的缠绕模块范畴,以及米切尔关于处理具有多个对象的环的哲学。埃斯特拉达(Estrada)和维利(Virili)的工作激发了这些表征,他们发展了一种在小预增范畴中取值的表征上的模块理论,然后以与在方案上的模块剪切相同的精神对其进行了研究。我们还通过弗罗贝尼斯和可分离函子描述了我们的理论与在小 K 线性范畴中取值的底层表示上的模块理论之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信