On graded \({\mathbb {E}}_{\infty }\)-rings and projective schemes in spectral algebraic geometry

Pub Date : 2022-01-31 DOI:10.1007/s40062-021-00298-0
Mariko Ohara, Takeshi Torii
{"title":"On graded \\({\\mathbb {E}}_{\\infty }\\)-rings and projective schemes in spectral algebraic geometry","authors":"Mariko Ohara,&nbsp;Takeshi Torii","doi":"10.1007/s40062-021-00298-0","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce graded <span>\\({\\mathbb {E}}_{\\infty }\\)</span>-rings and graded modules over them, and study their properties. We construct projective schemes associated to connective <span>\\({\\mathbb {N}}\\)</span>-graded <span>\\({\\mathbb {E}}_{\\infty }\\)</span>-rings in spectral algebraic geometry. Under some finiteness conditions, we show that the <span>\\(\\infty \\)</span>-category of almost perfect quasi-coherent sheaves over a spectral projective scheme <span>\\(\\text { {Proj}}\\,(A)\\)</span> associated to a connective <span>\\({\\mathbb {N}}\\)</span>-graded <span>\\({\\mathbb {E}}_{\\infty }\\)</span>-ring <i>A</i> can be described in terms of <span>\\({{\\mathbb {Z}}}\\)</span>-graded <i>A</i>-modules.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-021-00298-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00298-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce graded \({\mathbb {E}}_{\infty }\)-rings and graded modules over them, and study their properties. We construct projective schemes associated to connective \({\mathbb {N}}\)-graded \({\mathbb {E}}_{\infty }\)-rings in spectral algebraic geometry. Under some finiteness conditions, we show that the \(\infty \)-category of almost perfect quasi-coherent sheaves over a spectral projective scheme \(\text { {Proj}}\,(A)\) associated to a connective \({\mathbb {N}}\)-graded \({\mathbb {E}}_{\infty }\)-ring A can be described in terms of \({{\mathbb {Z}}}\)-graded A-modules.

分享
查看原文
谱代数几何中的分级\({\mathbb {E}}_{\infty }\) -环和射影格式
引入了阶跃\({\mathbb {E}}_{\infty }\) -环及其上的阶跃模,并研究了它们的性质。我们在谱代数几何中构造与连接\({\mathbb {N}}\) -分级\({\mathbb {E}}_{\infty }\) -环相关的射影格式。在某些有限条件下,我们证明了与连接的\({\mathbb {N}}\) -分级\({\mathbb {E}}_{\infty }\) -环a相关的谱投影格式\(\text { {Proj}}\,(A)\)上的几乎完美拟相干束的\(\infty \) -范畴可以用\({{\mathbb {Z}}}\) -分级a模来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信