Homogenization of the Schrödinger-Type Equations: Operator Estimates with Correctors

IF 0.6 4区 数学 Q3 MATHEMATICS
T. A. Suslina
{"title":"Homogenization of the Schrödinger-Type Equations: Operator Estimates with Correctors","authors":"T. A. Suslina","doi":"10.1134/S0016266322030078","DOIUrl":null,"url":null,"abstract":"<p> In <span>\\(L_2(\\mathbb R^d;\\mathbb C^n)\\)</span> we consider a self-adjoint elliptic second-order differential operator <span>\\(A_\\varepsilon\\)</span>. It is assumed that the coefficients of <span>\\(A_\\varepsilon\\)</span> are periodic and depend on <span>\\(\\mathbf x/\\varepsilon\\)</span>, where <span>\\(\\varepsilon&gt;0\\)</span> is a small parameter. We study the behavior of the operator exponential <span>\\(e^{-iA_\\varepsilon\\tau}\\)</span> for small <span>\\(\\varepsilon\\)</span> and <span>\\(\\tau\\in\\mathbb R\\)</span>. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation <span>\\(i\\partial_\\tau \\mathbf{u}_\\varepsilon(\\mathbf x,\\tau) = - (A_\\varepsilon{\\mathbf u}_\\varepsilon)(\\mathbf x,\\tau)\\)</span> with initial data in a special class. For fixed <span>\\(\\tau\\)</span> and <span>\\(\\varepsilon\\to 0\\)</span>, the solution <span>\\({\\mathbf u}_\\varepsilon(\\,\\boldsymbol\\cdot\\,,\\tau)\\)</span> converges in <span>\\(L_2(\\mathbb R^d;\\mathbb C^n)\\)</span> to the solution of the homogenized problem; the error is of order <span>\\(O(\\varepsilon)\\)</span>. We obtain approximations for the solution <span>\\({\\mathbf u}_\\varepsilon(\\,\\boldsymbol\\cdot\\,,\\tau)\\)</span> in <span>\\(L_2(\\mathbb R^d;\\mathbb C^n)\\)</span> with error <span>\\(O(\\varepsilon^2)\\)</span> and in <span>\\(H^1(\\mathbb R^d;\\mathbb C^n)\\)</span> with error <span>\\(O(\\varepsilon)\\)</span>. These approximations involve appropriate correctors. The dependence of errors on <span>\\(\\tau\\)</span> is traced. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322030078","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In \(L_2(\mathbb R^d;\mathbb C^n)\) we consider a self-adjoint elliptic second-order differential operator \(A_\varepsilon\). It is assumed that the coefficients of \(A_\varepsilon\) are periodic and depend on \(\mathbf x/\varepsilon\), where \(\varepsilon>0\) is a small parameter. We study the behavior of the operator exponential \(e^{-iA_\varepsilon\tau}\) for small \(\varepsilon\) and \(\tau\in\mathbb R\). The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation \(i\partial_\tau \mathbf{u}_\varepsilon(\mathbf x,\tau) = - (A_\varepsilon{\mathbf u}_\varepsilon)(\mathbf x,\tau)\) with initial data in a special class. For fixed \(\tau\) and \(\varepsilon\to 0\), the solution \({\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)\) converges in \(L_2(\mathbb R^d;\mathbb C^n)\) to the solution of the homogenized problem; the error is of order \(O(\varepsilon)\). We obtain approximations for the solution \({\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)\) in \(L_2(\mathbb R^d;\mathbb C^n)\) with error \(O(\varepsilon^2)\) and in \(H^1(\mathbb R^d;\mathbb C^n)\) with error \(O(\varepsilon)\). These approximations involve appropriate correctors. The dependence of errors on \(\tau\) is traced.

Schrödinger-Type方程的均匀化:带校正器的算子估计
在\(L_2(\mathbb R^d;\mathbb C^n)\)中,我们考虑一个自伴随椭圆二阶微分算子\(A_\varepsilon\)。假设\(A_\varepsilon\)的系数是周期性的,并且依赖于\(\mathbf x/\varepsilon\),其中\(\varepsilon>0\)是一个小参数。我们研究了算子指数\(e^{-iA_\varepsilon\tau}\)对于小的\(\varepsilon\)和\(\tau\in\mathbb R\)的行为。应用所得结果研究了一类具有初始数据的Schrödinger-type方程\(i\partial_\tau \mathbf{u}_\varepsilon(\mathbf x,\tau) = - (A_\varepsilon{\mathbf u}_\varepsilon)(\mathbf x,\tau)\)的Cauchy问题解的性质。对于固定的\(\tau\)和\(\varepsilon\to 0\), \({\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)\)的解在\(L_2(\mathbb R^d;\mathbb C^n)\)收敛于均匀化问题的解;错误顺序为\(O(\varepsilon)\)。我们在\(L_2(\mathbb R^d;\mathbb C^n)\)和\(H^1(\mathbb R^d;\mathbb C^n)\)中分别获得了误差为\(O(\varepsilon^2)\)和\(O(\varepsilon)\)的近似解\({\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)\)。这些近似包括适当的校正。跟踪了误差对\(\tau\)的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信