On Poisson Semigroup Hypercontractivity for Higher-Dimensional Spheres

IF 0.6 4区 数学 Q3 MATHEMATICS
Yi. C. Huang
{"title":"On Poisson Semigroup Hypercontractivity for Higher-Dimensional Spheres","authors":"Yi. C. Huang","doi":"10.1134/S001626632203008X","DOIUrl":null,"url":null,"abstract":"<p> In this note we consider a variant of a question of Mueller and Weissler raised in 1982, thereby complementing a classical result of Beckner on Stein’s conjecture and a recent result of Frank and Ivanisvili. More precisely, we show that, for <span>\\(1&lt;p\\leq q&lt;\\infty\\)</span> and <span>\\(n\\geq1\\)</span>, the Poisson semigroup <span>\\(e^{-t\\sqrt{-\\Delta-(n-1)\\mathbb{P}}}\\)</span> on the <span>\\(n\\)</span>-sphere is hypercontractive from <span>\\(L^p\\)</span> to <span>\\(L^q\\)</span> if and only if <span>\\(e^{-t}\\leq\\sqrt{(p-1)/(q-1)}\\)</span>; here <span>\\(\\Delta\\)</span> is the Laplace–Beltrami operator on the <span>\\(n\\)</span>-sphere and <span>\\(\\mathbb{P}\\)</span> is the projection operator onto spherical harmonics of degree <span>\\(\\geq1\\)</span>. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"56 3","pages":"235 - 238"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S001626632203008X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we consider a variant of a question of Mueller and Weissler raised in 1982, thereby complementing a classical result of Beckner on Stein’s conjecture and a recent result of Frank and Ivanisvili. More precisely, we show that, for \(1<p\leq q<\infty\) and \(n\geq1\), the Poisson semigroup \(e^{-t\sqrt{-\Delta-(n-1)\mathbb{P}}}\) on the \(n\)-sphere is hypercontractive from \(L^p\) to \(L^q\) if and only if \(e^{-t}\leq\sqrt{(p-1)/(q-1)}\); here \(\Delta\) is the Laplace–Beltrami operator on the \(n\)-sphere and \(\mathbb{P}\) is the projection operator onto spherical harmonics of degree \(\geq1\).

高维球的泊松半群超收缩性
在本文中,我们考虑1982年Mueller和Weissler提出的一个问题的变体,从而补充了Beckner对Stein猜想的经典结果和Frank和Ivanisvili最近的结果。更准确地说,我们证明了对于\(1<p\leq q<\infty\)和\(n\geq1\), \(n\)球上的泊松半群\(e^{-t\sqrt{-\Delta-(n-1)\mathbb{P}}}\)从\(L^p\)到\(L^q\)是超收缩的当且仅当\(e^{-t}\leq\sqrt{(p-1)/(q-1)}\);其中\(\Delta\)为\(n\) -球上的拉普拉斯-贝尔特拉米算子,\(\mathbb{P}\)为\(\geq1\)次球谐波上的投影算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信