Parametric Korteweg–de Vries Hierarchy and Hyperelliptic Sigma Functions

IF 0.6 4区 数学 Q3 MATHEMATICS
E. Yu. Bunkova, V. M. Bukhshtaber
{"title":"Parametric Korteweg–de Vries Hierarchy and Hyperelliptic Sigma Functions","authors":"E. Yu. Bunkova,&nbsp;V. M. Bukhshtaber","doi":"10.1134/S0016266322030029","DOIUrl":null,"url":null,"abstract":"<p> In this paper, a parametric Korteweg–de Vries hierarchy is defined that depends on an infinite set of graded parameters <span>\\(a = (a_4,a_6,\\dots)\\)</span>. It is shown that, for any genus <span>\\(g\\)</span>, the Klein hyperelliptic function <span>\\(\\wp_{1,1}(t,\\lambda)\\)</span> defined on the basis of the multidimensional sigma function <span>\\(\\sigma(t, \\lambda)\\)</span>, where <span>\\(t = (t_1, t_3,\\dots, t_{2g-1})\\)</span> and <span>\\(\\lambda = (\\lambda_4, \\lambda_6,\\dots, \\lambda_{4 g + 2})\\)</span>, specifies a solution to this hierarchy in which the parameters <span>\\(a\\)</span> are given as polynomials in the parameters <span>\\(\\lambda\\)</span> of the sigma function. The proof uses results concerning the family of operators introduced by V. M. Buchstaber and S. Yu. Shorina. This family consists of <span>\\(g\\)</span> third-order differential operators in <span>\\(g\\)</span> variables. Such families are defined for all <span>\\(g \\geqslant 1\\)</span>, the operators in each of them pairwise commute with each other and also commute with the Schrödinger operator. In this paper a relationship between these families and the Korteweg–de Vries parametric hierarchy is described. A similar infinite family of third-order operators on an infinite set of variables is constructed. The results obtained are extended to the case of such a family. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322030029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a parametric Korteweg–de Vries hierarchy is defined that depends on an infinite set of graded parameters \(a = (a_4,a_6,\dots)\). It is shown that, for any genus \(g\), the Klein hyperelliptic function \(\wp_{1,1}(t,\lambda)\) defined on the basis of the multidimensional sigma function \(\sigma(t, \lambda)\), where \(t = (t_1, t_3,\dots, t_{2g-1})\) and \(\lambda = (\lambda_4, \lambda_6,\dots, \lambda_{4 g + 2})\), specifies a solution to this hierarchy in which the parameters \(a\) are given as polynomials in the parameters \(\lambda\) of the sigma function. The proof uses results concerning the family of operators introduced by V. M. Buchstaber and S. Yu. Shorina. This family consists of \(g\) third-order differential operators in \(g\) variables. Such families are defined for all \(g \geqslant 1\), the operators in each of them pairwise commute with each other and also commute with the Schrödinger operator. In this paper a relationship between these families and the Korteweg–de Vries parametric hierarchy is described. A similar infinite family of third-order operators on an infinite set of variables is constructed. The results obtained are extended to the case of such a family.

参数Korteweg-de Vries层次和超椭圆Sigma函数
本文定义了一个参数Korteweg-de Vries层次结构,该层次结构依赖于一个无限的分级参数集\(a = (a_4,a_6,\dots)\)。结果表明,对于任意属\(g\),基于多维sigma函数\(\sigma(t, \lambda)\)(其中\(t = (t_1, t_3,\dots, t_{2g-1})\)和\(\lambda = (\lambda_4, \lambda_6,\dots, \lambda_{4 g + 2})\))定义的Klein超椭圆函数\(\wp_{1,1}(t,\lambda)\)指定了该层次结构的一个解,其中参数\(a\)作为sigma函数参数\(\lambda\)中的多项式给出。该证明使用了V. M. Buchstaber和S. Yu介绍的关于算子族的结果。肖丽娜。该族由\(g\)变量中的\(g\)三阶微分算子组成。这样的族是为所有\(g \geqslant 1\)定义的,其中每个操作符成对地相互交换,也与Schrödinger操作符交换。本文描述了这些族与Korteweg-de Vries参数层次之间的关系。在无穷变量集上构造了一个类似的无穷一族三阶算子。所得结果推广到这样一个家庭的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信