{"title":"Taylor Spectrum for Modules over Lie Algebras","authors":"B. I. Bilich","doi":"10.1134/S0016266322030017","DOIUrl":null,"url":null,"abstract":"<p> In this paper we generalize the notion of the Taylor spectrum to modules over an arbitrary Lie algebra and study it for finite-dimensional modules. We show that the spectrum can be described as the set of simple submodules in the case of nilpotent and semisimple Lie algebras. We also show that this result does not hold for solvable Lie algebras and obtain a precise description of the spectrum in the case of Borel subalgebras of semisimple Lie algebras. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"56 3","pages":"159 - 168"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322030017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we generalize the notion of the Taylor spectrum to modules over an arbitrary Lie algebra and study it for finite-dimensional modules. We show that the spectrum can be described as the set of simple submodules in the case of nilpotent and semisimple Lie algebras. We also show that this result does not hold for solvable Lie algebras and obtain a precise description of the spectrum in the case of Borel subalgebras of semisimple Lie algebras.
期刊介绍:
Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.