{"title":"The completion theorem in twisted equivariant K-theory for proper actions","authors":"Noé Bárcenas, Mario Velásquez","doi":"10.1007/s40062-021-00299-z","DOIUrl":null,"url":null,"abstract":"<div><p>We compare different algebraic structures in twisted equivariant <i>K</i>-theory for proper actions of discrete groups. After the construction of a module structure over untwisted equivariant K-theory, we prove a completion Theorem of Atiyah–Segal type for twisted equivariant K-theory. Using a universal coefficient theorem, we prove a cocompletion Theorem for twisted Borel K-homology for discrete groups.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00299-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We compare different algebraic structures in twisted equivariant K-theory for proper actions of discrete groups. After the construction of a module structure over untwisted equivariant K-theory, we prove a completion Theorem of Atiyah–Segal type for twisted equivariant K-theory. Using a universal coefficient theorem, we prove a cocompletion Theorem for twisted Borel K-homology for discrete groups.