Short Review on CO Combustion Promoters for FCC Regenerator

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
Snehalkumar Parmar, T. M. Sankaranarayanan, Gopal Ravichandran
{"title":"Short Review on CO Combustion Promoters for FCC Regenerator","authors":"Snehalkumar Parmar,&nbsp;T. M. Sankaranarayanan,&nbsp;Gopal Ravichandran","doi":"10.1007/s10563-022-09368-6","DOIUrl":null,"url":null,"abstract":"<div><p>Fluidized Catalytic Cracking (FCC) is one of the key processes of any petroleum refinery as it produces gasoline, Liquefied Petroleum Gas (LPG) and valuable petrochemical feedstock viz. ethylene and propylene. FCC is a catalytic process where zeolite (USY and ZSM-5) based catalysts are being used, contain a high concentration of acidic sites, which are responsible for cracking heavy hydrocarbon molecules into smaller ones. During these cracking reactions, significant coke formation occurs over the catalyst surface and blocks the pores, thus resulting drop in catalytic activity. To regain the catalyst activity, the coke on the catalyst is burned in the FCC regenerator unit and provides heat demand for the FCC riser bed where the cracking reaction takes place and the cycle continues. The temperature of the FCC regenerator reaches around 700 °C due to the combustion of coke on the catalyst. Due to incomplete combustion of coke on catalyst produces CO which burns above the catalyst bed, which is denoted as a dilute bed. The heat of reaction of CO combustion needs to be realized on catalysts bed and also to avoid the heat loss in the regenerator dilute bed. Higher dilute bed temperature damages the FCC regenerator internals, which is to be avoided. Conventionally, additives named CO Combustion Promoters (COPs) have been used for the promotion of CO to CO<sub>2</sub> in the catalyst bed which helps in improving regeneration of FCC equilibrium catalysts. The present article covers the concept and various types of COP reported in the literature. Different preparation methodologies, physico-chemical properties and evaluation results have been discussed. These insights would be helpful to understand the structure–property–activity relationship of COP. Further, it can also help to select the right COP for the desired commercial applications.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"26 4","pages":"281 - 293"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-022-09368-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fluidized Catalytic Cracking (FCC) is one of the key processes of any petroleum refinery as it produces gasoline, Liquefied Petroleum Gas (LPG) and valuable petrochemical feedstock viz. ethylene and propylene. FCC is a catalytic process where zeolite (USY and ZSM-5) based catalysts are being used, contain a high concentration of acidic sites, which are responsible for cracking heavy hydrocarbon molecules into smaller ones. During these cracking reactions, significant coke formation occurs over the catalyst surface and blocks the pores, thus resulting drop in catalytic activity. To regain the catalyst activity, the coke on the catalyst is burned in the FCC regenerator unit and provides heat demand for the FCC riser bed where the cracking reaction takes place and the cycle continues. The temperature of the FCC regenerator reaches around 700 °C due to the combustion of coke on the catalyst. Due to incomplete combustion of coke on catalyst produces CO which burns above the catalyst bed, which is denoted as a dilute bed. The heat of reaction of CO combustion needs to be realized on catalysts bed and also to avoid the heat loss in the regenerator dilute bed. Higher dilute bed temperature damages the FCC regenerator internals, which is to be avoided. Conventionally, additives named CO Combustion Promoters (COPs) have been used for the promotion of CO to CO2 in the catalyst bed which helps in improving regeneration of FCC equilibrium catalysts. The present article covers the concept and various types of COP reported in the literature. Different preparation methodologies, physico-chemical properties and evaluation results have been discussed. These insights would be helpful to understand the structure–property–activity relationship of COP. Further, it can also help to select the right COP for the desired commercial applications.

Abstract Image

FCC蓄热器CO助燃剂的研究进展
流化催化裂化(FCC)是任何炼油厂生产汽油、液化石油气(LPG)和有价值的石化原料乙烯和丙烯的关键工艺之一。催化裂化是一种使用沸石(USY和ZSM-5)催化剂的催化过程,含有高浓度的酸性位点,负责将重烃分子裂解成较小的分子。在这些裂化反应中,催化剂表面会形成大量的焦炭,堵塞了气孔,从而导致催化活性下降。为了恢复催化剂的活性,催化剂上的焦炭在催化裂化再生装置中燃烧,并为催化裂化提升床提供热需求,裂化反应在这里发生,循环继续。由于焦炭在催化剂上的燃烧,催化裂化蓄热器的温度达到700℃左右。由于焦炭在催化剂上的不完全燃烧产生CO, CO在催化剂床上燃烧,称为稀床。CO燃烧的反应热既要在催化剂床上实现,又要避免再生器稀床的热损失。较高的稀床温度会损坏FCC再生器内部,这是必须避免的。在催化床层中,通常使用CO助燃剂(cop)来促进CO向CO2的转化,从而提高催化裂化平衡催化剂的再生能力。本文涵盖了文献中报道的缔约方会议的概念和各种类型。讨论了不同的制备方法、理化性质和评价结果。这些见解将有助于理解COP的结构-性能-活性关系。此外,它还可以帮助为所需的商业应用选择合适的COP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信