Turbulence Effects on the Statistical Behaviour and Modelling of Flame Surface Density and the Terms of Its Transport Equation in Turbulent Premixed Flames
Arun Ravi Varma, Umair Ahmed, Nilanjan Chakraborty
{"title":"Turbulence Effects on the Statistical Behaviour and Modelling of Flame Surface Density and the Terms of Its Transport Equation in Turbulent Premixed Flames","authors":"Arun Ravi Varma, Umair Ahmed, Nilanjan Chakraborty","doi":"10.1007/s10494-023-00430-5","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of the ratio of integral length scale to flame thickness on the statistical behaviours of flame surface density (FSD) and its transport has been analysed using a Direct Numerical Simulation database of three-dimensional statistically planar turbulent premixed flames for different turbulence intensities. It has been found that turbulent burning velocity based on volume-integration of reaction rate and flame surface area increase but the peak magnitudes of the FSD and the terms of the FSD transport term decrease with an increase in length scale ratio for a given turbulence intensity. The flame brush thickness and flame wrinkling increase with an increase in length scale ratio for all turbulence intensities. However, the qualitative behaviours of the unclosed terms in the FSD transport equation remain unaltered by the length scale ratio and in all cases the tangential strain rate term and the curvature term act as leading order source and sink, respectively. A decrease in length scale ratio for a given turbulence intensity leads to a decrease in Damk?hler number and an increase in Karlovitz number. This has an implication on the alignment of reactive scalar gradient with local strain rate eigenvectors, which in turn increases positive contribution of the tangential strain rate term with a decrease in length scale ratio. Moreover, an increase in Karlovitz number increases the likelihood of negative contribution of the curvature term. Thus, the magnitude of the negative contribution of the FSD curvature term increases with a decrease in length scale ratio for a given turbulence intensity. The model for the tangential strain rate term, which explicitly considers the scalar gradient alignment with local principal strain rate eigenvectors, has been shown to be more successful than the models that do not account for the scalar gradient alignment characteristics. Moreover, the existing model for the curvature and propagation term needed modification to account for greater likelihood of negative values for higher Karlovitz number. However, the models for the unclosed flux of FSD and the mean reaction rate closure are not significantly affected by the length scale ratio.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"111 2","pages":"531 - 565"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00430-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00430-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of the ratio of integral length scale to flame thickness on the statistical behaviours of flame surface density (FSD) and its transport has been analysed using a Direct Numerical Simulation database of three-dimensional statistically planar turbulent premixed flames for different turbulence intensities. It has been found that turbulent burning velocity based on volume-integration of reaction rate and flame surface area increase but the peak magnitudes of the FSD and the terms of the FSD transport term decrease with an increase in length scale ratio for a given turbulence intensity. The flame brush thickness and flame wrinkling increase with an increase in length scale ratio for all turbulence intensities. However, the qualitative behaviours of the unclosed terms in the FSD transport equation remain unaltered by the length scale ratio and in all cases the tangential strain rate term and the curvature term act as leading order source and sink, respectively. A decrease in length scale ratio for a given turbulence intensity leads to a decrease in Damk?hler number and an increase in Karlovitz number. This has an implication on the alignment of reactive scalar gradient with local strain rate eigenvectors, which in turn increases positive contribution of the tangential strain rate term with a decrease in length scale ratio. Moreover, an increase in Karlovitz number increases the likelihood of negative contribution of the curvature term. Thus, the magnitude of the negative contribution of the FSD curvature term increases with a decrease in length scale ratio for a given turbulence intensity. The model for the tangential strain rate term, which explicitly considers the scalar gradient alignment with local principal strain rate eigenvectors, has been shown to be more successful than the models that do not account for the scalar gradient alignment characteristics. Moreover, the existing model for the curvature and propagation term needed modification to account for greater likelihood of negative values for higher Karlovitz number. However, the models for the unclosed flux of FSD and the mean reaction rate closure are not significantly affected by the length scale ratio.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.