A locally discontinuous enriched finite element formulation for acoustics

F. Rochinha, G. Alvarez, E. G. D. D. Carmo, A. Loula
{"title":"A locally discontinuous enriched finite element formulation for acoustics","authors":"F. Rochinha, G. Alvarez, E. G. D. D. Carmo, A. Loula","doi":"10.1002/CNM.946","DOIUrl":null,"url":null,"abstract":"In (Comput. Methods Appl. Mech. Eng. 2006, in press) we introduced a discontinuous Galerkin finite element method for Helmholtz equation in which continuity is relaxed locally in the interior of the element. The shape functions associated with interior nodes of the element are bilinear discontinuous bubbles, and the corresponding degrees of freedom can be eliminated at element level by static condensation yielding a global finite element method with the same connectivity of classical C° Galerkin finite element approximations. Stability is provided by the discontinuous bubbles with appropriate choice of the stabilization parameters related to the weak enforcement of continuity inside each element. In the present work, departing from the stencil obtained by condensation of the bubble degrees of freedom, we build a new strategy for determining the optimal values of these parameters aiming at matching the exact wave number in two different directions. Stability and accuracy of the proposed formulation are demonstrated in several numerical examples.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"23 1","pages":"623-637"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.946","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In (Comput. Methods Appl. Mech. Eng. 2006, in press) we introduced a discontinuous Galerkin finite element method for Helmholtz equation in which continuity is relaxed locally in the interior of the element. The shape functions associated with interior nodes of the element are bilinear discontinuous bubbles, and the corresponding degrees of freedom can be eliminated at element level by static condensation yielding a global finite element method with the same connectivity of classical C° Galerkin finite element approximations. Stability is provided by the discontinuous bubbles with appropriate choice of the stabilization parameters related to the weak enforcement of continuity inside each element. In the present work, departing from the stencil obtained by condensation of the bubble degrees of freedom, we build a new strategy for determining the optimal values of these parameters aiming at matching the exact wave number in two different directions. Stability and accuracy of the proposed formulation are demonstrated in several numerical examples.
声学的局部不连续丰富有限元公式
(第一版。方法:。动力机械。(Eng. 2006, in press)我们介绍了一种不连续的Galerkin有限元方法,其中连续性在单元内部局部松弛。与单元内部节点相关的形状函数是双线性不连续的气泡,通过静态凝聚可以在单元级消除相应的自由度,从而产生具有经典C°伽辽金有限元近似相同连性的全局有限元方法。稳定性是由不连续气泡提供的,稳定参数的适当选择与每个单元内部连续性的弱执行有关。在本工作中,我们从气泡自由度的凝结得到的模板出发,建立了一种新的策略来确定这些参数的最优值,目的是在两个不同方向上匹配精确的波数。数值算例验证了该公式的稳定性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信