Hamiltonian-based error computations

Y. Kuo, K. Behdinan, W. Cleghorn
{"title":"Hamiltonian-based error computations","authors":"Y. Kuo, K. Behdinan, W. Cleghorn","doi":"10.1002/CNM.814","DOIUrl":null,"url":null,"abstract":"This paper presents two sets of the Hamiltonian for checking errors of approximated solutions. The first set can be applied to those problems having any number of independent and dependent variables. This set of the Hamiltonian can effectively indicate the errors of approximated solutions when requiring a high accuracy. The second set of the Hamiltonian has the invariant property when the Lagrangian is not an explicit function of time, even for non-conservative systems. Both sets can be formulated as error indicators to check errors of approximated solutions. Three illustrative examples demonstrate the error analyses of finite element solutions. Copyright © 2005 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"22 1","pages":"283-299"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.814","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents two sets of the Hamiltonian for checking errors of approximated solutions. The first set can be applied to those problems having any number of independent and dependent variables. This set of the Hamiltonian can effectively indicate the errors of approximated solutions when requiring a high accuracy. The second set of the Hamiltonian has the invariant property when the Lagrangian is not an explicit function of time, even for non-conservative systems. Both sets can be formulated as error indicators to check errors of approximated solutions. Three illustrative examples demonstrate the error analyses of finite element solutions. Copyright © 2005 John Wiley & Sons, Ltd.
基于哈密顿误差计算
本文给出了两组用于检验近似解误差的哈密顿量。第一组可以应用于具有任意数量的自变量和因变量的问题。这组哈密顿量可以有效地指示精度要求较高的近似解的误差。当拉格朗日函数不是时间的显式函数时,即使对于非保守系统,第二组哈密顿函数也具有不变的性质。这两组都可以表示为误差指标来检查近似解的误差。三个实例说明了有限元解的误差分析。版权所有©2005 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信