Wave Propagation in Functionally-Graded Nanoplates Embedded in a Winkler–Pasternak Foundation with Initial Stress Effect

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
M. Ellali, M. Bouazza, A. M. Zenkour
{"title":"Wave Propagation in Functionally-Graded Nanoplates Embedded in a Winkler–Pasternak Foundation with Initial Stress Effect","authors":"M. Ellali,&nbsp;M. Bouazza,&nbsp;A. M. Zenkour","doi":"10.1134/S1029959923030049","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the analysis of wave propagation in functionally-graded (FG) nanoplates on a Winkler–Pasternak foundation. The investigation is carried out in the framework of nonlocal elasticity theory and a new four-unknown higher-order displacement theory including indeterminate integral terms. Hamilton’s principle and Navier’s method are used to obtain the frequency relations of FG nanoplates for different conditions by solving an eigenvalue problem. The obtained results for the frequency and phase velocity of wave propagation in an FG nanoplate are compared with recent outcomes of similar research.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 3","pages":"282 - 294"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923030049","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the analysis of wave propagation in functionally-graded (FG) nanoplates on a Winkler–Pasternak foundation. The investigation is carried out in the framework of nonlocal elasticity theory and a new four-unknown higher-order displacement theory including indeterminate integral terms. Hamilton’s principle and Navier’s method are used to obtain the frequency relations of FG nanoplates for different conditions by solving an eigenvalue problem. The obtained results for the frequency and phase velocity of wave propagation in an FG nanoplate are compared with recent outcomes of similar research.

Abstract Image

具有初始应力效应的温克勒-帕斯捷尔纳克地基中功能梯度纳米板的波传播
本文对温克勒-帕斯捷尔纳克地基上功能梯度纳米片中的波传播特性进行了分析。在非局部弹性理论和包含不定积分项的四未知高阶位移理论的框架下进行了研究。利用Hamilton原理和Navier方法求解特征值问题,得到了不同条件下FG纳米片的频率关系。所得的波在FG纳米片中的传播频率和相速度的结果与最近的类似研究结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信