E. Erturk
{"title":"Numerical performance of compact fourth‐order formulation of the Navier–Stokes equations","authors":"E. Erturk","doi":"10.1002/cnm.1090","DOIUrl":null,"url":null,"abstract":"In this study, the numerical performance of the fourth-order compact formulation of the steady 2-D incompressible Navier–Stokes (NS) equations introduced by Erturk et al. (Int. J. Numer. Methods Fluids 2006; 50:421–436) will be presented. The benchmark-driven cavity flow problem will be solved using the introduced compact fourth-order formulation of the NS equations with two different line iterative semi-implicit methods for both second- and fourth-order spatial accuracy. The extra CPU work needed for increasing the spatial accuracy from second-order ((Δx2)) formulation to fourth-order ((Δx4)) formulation will be presented. Copyright © 2008 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cnm.1090","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cnm.1090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Navier-Stokes方程紧致四阶公式的数值性能
在本研究中,由Erturk等人引入的稳定二维不可压缩Navier-Stokes (NS)方程的四阶紧致公式的数值性能。j .号码。[方法];(50:421-436)。基准驱动的空腔流动问题将采用NS方程的紧凑四阶公式,采用两种不同的线迭代半隐式方法求解二阶和四阶空间精度。将介绍将空间精度从二阶((Δx2))公式提高到四阶((Δx4))公式所需的额外CPU工作。版权所有©2008 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。