Numerical performance of compact fourth‐order formulation of the Navier–Stokes equations

E. Erturk
{"title":"Numerical performance of compact fourth‐order formulation of the Navier–Stokes equations","authors":"E. Erturk","doi":"10.1002/cnm.1090","DOIUrl":null,"url":null,"abstract":"In this study, the numerical performance of the fourth-order compact formulation of the steady 2-D incompressible Navier–Stokes (NS) equations introduced by Erturk et al. (Int. J. Numer. Methods Fluids 2006; 50:421–436) will be presented. The benchmark-driven cavity flow problem will be solved using the introduced compact fourth-order formulation of the NS equations with two different line iterative semi-implicit methods for both second- and fourth-order spatial accuracy. The extra CPU work needed for increasing the spatial accuracy from second-order ((Δx2)) formulation to fourth-order ((Δx4)) formulation will be presented. Copyright © 2008 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cnm.1090","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cnm.1090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this study, the numerical performance of the fourth-order compact formulation of the steady 2-D incompressible Navier–Stokes (NS) equations introduced by Erturk et al. (Int. J. Numer. Methods Fluids 2006; 50:421–436) will be presented. The benchmark-driven cavity flow problem will be solved using the introduced compact fourth-order formulation of the NS equations with two different line iterative semi-implicit methods for both second- and fourth-order spatial accuracy. The extra CPU work needed for increasing the spatial accuracy from second-order ((Δx2)) formulation to fourth-order ((Δx4)) formulation will be presented. Copyright © 2008 John Wiley & Sons, Ltd.
Navier-Stokes方程紧致四阶公式的数值性能
在本研究中,由Erturk等人引入的稳定二维不可压缩Navier-Stokes (NS)方程的四阶紧致公式的数值性能。j .号码。[方法];(50:421-436)。基准驱动的空腔流动问题将采用NS方程的紧凑四阶公式,采用两种不同的线迭代半隐式方法求解二阶和四阶空间精度。将介绍将空间精度从二阶((Δx2))公式提高到四阶((Δx4))公式所需的额外CPU工作。版权所有©2008 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信