Algorithm for analysis of periodic oscillations of structural systems with geometric nonlinearity

M. Ragulskis, K. Ragulskis
{"title":"Algorithm for analysis of periodic oscillations of structural systems with geometric nonlinearity","authors":"M. Ragulskis, K. Ragulskis","doi":"10.1002/CNM.1073","DOIUrl":null,"url":null,"abstract":"An algorithm for analysis of periodic oscillations of forced elastic systems with geometric nonlinearity is presented in this paper. Modal decomposition of the solution, computation of periodic oscillations for every eigenmode and estimation of geometric nonlinearities using the method of initial deformations enable to construct a computational technique that can be very effective in computation of steady-state periodic motions of slightly damped structures under periodic forcing. It is shown that the developed algorithm can be successfully exploited for the calculation of structural response of a micromechanical cantilever. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"1863-1871"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1073","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An algorithm for analysis of periodic oscillations of forced elastic systems with geometric nonlinearity is presented in this paper. Modal decomposition of the solution, computation of periodic oscillations for every eigenmode and estimation of geometric nonlinearities using the method of initial deformations enable to construct a computational technique that can be very effective in computation of steady-state periodic motions of slightly damped structures under periodic forcing. It is shown that the developed algorithm can be successfully exploited for the calculation of structural response of a micromechanical cantilever. Copyright © 2007 John Wiley & Sons, Ltd.
几何非线性结构系统周期振动分析算法
提出了一种具有几何非线性的强迫弹性系统周期振动分析算法。通过对解的模态分解、每个特征模态的周期振动计算和初始变形法的几何非线性估计,构建了一种可以非常有效地计算周期强迫下微阻尼结构稳态周期运动的计算技术。结果表明,所开发的算法可以成功地用于微机械悬臂梁的结构响应计算。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信