M. Bluck, S. Walker
{"title":"Polynomial basis functions on pyramidal elements","authors":"M. Bluck, S. Walker","doi":"10.1002/CNM.1070","DOIUrl":null,"url":null,"abstract":"Pyramidal elements are necessary to effect the transition from tetrahedral to hexahedral elements, a common requirement in practical finite element applications. However, existing pyramidal transition elements suffer from degeneracy or other numerical difficulties, requiring, at the least, warnings and care in their use. This paper presents a general technique for the construction of nodal basis functions on pyramidal finite elements. General forms for basis functions of arbitrary order are presented. The basis functions so derived are fully conformal and free of degeneracy. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"1827-1837"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1070","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
金字塔元上的多项式基函数
锥体单元是实现四面体向六面体单元过渡所必需的,这是实际有限元应用中常见的要求。然而,现有的金字塔过渡元存在退化或其他数值上的困难,至少在使用时需要警告和小心。本文给出了在锥体有限元上构造节点基函数的一般技术。给出了任意阶基函数的一般形式。由此导出的基函数是完全保角的,没有简并性。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。