Polynomial basis functions on pyramidal elements

M. Bluck, S. Walker
{"title":"Polynomial basis functions on pyramidal elements","authors":"M. Bluck, S. Walker","doi":"10.1002/CNM.1070","DOIUrl":null,"url":null,"abstract":"Pyramidal elements are necessary to effect the transition from tetrahedral to hexahedral elements, a common requirement in practical finite element applications. However, existing pyramidal transition elements suffer from degeneracy or other numerical difficulties, requiring, at the least, warnings and care in their use. This paper presents a general technique for the construction of nodal basis functions on pyramidal finite elements. General forms for basis functions of arbitrary order are presented. The basis functions so derived are fully conformal and free of degeneracy. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"1827-1837"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1070","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Pyramidal elements are necessary to effect the transition from tetrahedral to hexahedral elements, a common requirement in practical finite element applications. However, existing pyramidal transition elements suffer from degeneracy or other numerical difficulties, requiring, at the least, warnings and care in their use. This paper presents a general technique for the construction of nodal basis functions on pyramidal finite elements. General forms for basis functions of arbitrary order are presented. The basis functions so derived are fully conformal and free of degeneracy. Copyright © 2007 John Wiley & Sons, Ltd.
金字塔元上的多项式基函数
锥体单元是实现四面体向六面体单元过渡所必需的,这是实际有限元应用中常见的要求。然而,现有的金字塔过渡元存在退化或其他数值上的困难,至少在使用时需要警告和小心。本文给出了在锥体有限元上构造节点基函数的一般技术。给出了任意阶基函数的一般形式。由此导出的基函数是完全保角的,没有简并性。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信