Y. Fragakis, E. Oñate
{"title":"Parallel Delaunay triangulation for particle finite element methods","authors":"Y. Fragakis, E. Oñate","doi":"10.1002/CNM.1007","DOIUrl":null,"url":null,"abstract":"Delaunay triangulation is a geometric problem that is relatively difficult to parallelize. Parallel algorithms are usually characterized by considerable interprocessor communication or important serialized parts. In this paper, we propose a method that achieves high speed-ups, but needs information regarding locally maximum element circumspheres prior to the beginning of the algorithm. Such information is directly available in iterative methods, like the particle finite element methods. The developed parallel Delaunay triangulation method, has minimum communication requirements, is quite simple and achieves high parallel efficiency. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"1009-1017"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1007","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
粒子有限元方法的平行Delaunay三角剖分
德劳内三角剖分是一个比较难并行化的几何问题。并行算法通常具有相当大的处理器间通信或重要的序列化部分。在本文中,我们提出了一种实现高速加速的方法,但在算法开始之前需要有关局部最大元圆的信息。这些信息可以在迭代方法中直接获得,如粒子有限元方法。所开发的并行Delaunay三角剖分方法具有通信需求最小、结构简单、并行效率高的特点。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。