Parallel Delaunay triangulation for particle finite element methods

Y. Fragakis, E. Oñate
{"title":"Parallel Delaunay triangulation for particle finite element methods","authors":"Y. Fragakis, E. Oñate","doi":"10.1002/CNM.1007","DOIUrl":null,"url":null,"abstract":"Delaunay triangulation is a geometric problem that is relatively difficult to parallelize. Parallel algorithms are usually characterized by considerable interprocessor communication or important serialized parts. In this paper, we propose a method that achieves high speed-ups, but needs information regarding locally maximum element circumspheres prior to the beginning of the algorithm. Such information is directly available in iterative methods, like the particle finite element methods. The developed parallel Delaunay triangulation method, has minimum communication requirements, is quite simple and achieves high parallel efficiency. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1007","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Delaunay triangulation is a geometric problem that is relatively difficult to parallelize. Parallel algorithms are usually characterized by considerable interprocessor communication or important serialized parts. In this paper, we propose a method that achieves high speed-ups, but needs information regarding locally maximum element circumspheres prior to the beginning of the algorithm. Such information is directly available in iterative methods, like the particle finite element methods. The developed parallel Delaunay triangulation method, has minimum communication requirements, is quite simple and achieves high parallel efficiency. Copyright © 2007 John Wiley & Sons, Ltd.
粒子有限元方法的平行Delaunay三角剖分
德劳内三角剖分是一个比较难并行化的几何问题。并行算法通常具有相当大的处理器间通信或重要的序列化部分。在本文中,我们提出了一种实现高速加速的方法,但在算法开始之前需要有关局部最大元圆的信息。这些信息可以在迭代方法中直接获得,如粒子有限元方法。所开发的并行Delaunay三角剖分方法具有通信需求最小、结构简单、并行效率高的特点。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信