V. B. Oshurko, A. F. Bunkin, S. M. Pershin, M. V. Arkhipenko, O. V. Karpova
{"title":"Frequency Shift for the Stimulated Low-Frequency Raman Scattering in Aqueous Suspensions of Viruses with a Change in the Laser Pump Intensity","authors":"V. B. Oshurko, A. F. Bunkin, S. M. Pershin, M. V. Arkhipenko, O. V. Karpova","doi":"10.3103/S1541308X2304009X","DOIUrl":null,"url":null,"abstract":"<p>A shift of the frequency of resonances of stimulated low-frequency Raman scattering (SLFRS) of laser radiation in liquid suspensions of viruses with a change in the pump wave intensity has been found for the first time. It is shown that the experimentally observed dependence of the frequency of these resonances in a suspension of tobacco mosaic virus (TMV) on the pump intensity is explained in terms of the scattering mechanism proposed by us previously.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 4","pages":"233 - 237"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Phenomena","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1541308X2304009X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A shift of the frequency of resonances of stimulated low-frequency Raman scattering (SLFRS) of laser radiation in liquid suspensions of viruses with a change in the pump wave intensity has been found for the first time. It is shown that the experimentally observed dependence of the frequency of these resonances in a suspension of tobacco mosaic virus (TMV) on the pump intensity is explained in terms of the scattering mechanism proposed by us previously.
期刊介绍:
Physics of Wave Phenomena publishes original contributions in general and nonlinear wave theory, original experimental results in optics, acoustics and radiophysics. The fields of physics represented in this journal include nonlinear optics, acoustics, and radiophysics; nonlinear effects of any nature including nonlinear dynamics and chaos; phase transitions including light- and sound-induced; laser physics; optical and other spectroscopies; new instruments, methods, and measurements of wave and oscillatory processes; remote sensing of waves in natural media; wave interactions in biophysics, econophysics and other cross-disciplinary areas.