Jie Wan, Jiawei Chen, Yijun Shi, Yiyan Wang, Yanjun Liu, Jin Zhang, Gongde Wu, Renxian Zhou
{"title":"In-situ One-Pot Synthesis of Ti/Cu-SSZ-13 Catalysts with Highly Efficient NH3-SCR Catalytic Performance as Well as Superior H2O/SO2 Tolerability","authors":"Jie Wan, Jiawei Chen, Yijun Shi, Yiyan Wang, Yanjun Liu, Jin Zhang, Gongde Wu, Renxian Zhou","doi":"10.1007/s10563-022-09374-8","DOIUrl":null,"url":null,"abstract":"<div><p>Series of Ti/Cu-SSZ-13 zeolite catalysts with variable Ti content were prepared via convenient <i>in-situ</i> one-pot synthesizing strategy. Systematic evaluations of the NH<sub>3</sub>-SCR catalytic performance over the obtained catalysts were conducted. Results show that Ti/Cu-SSZ-13 with appropriate Ti content (in the current work Ti<sub>0.81</sub>/Cu<sub>2.15</sub>-SSZ-13) could serve as capable candidate for NH<sub>3</sub>-SCR application, as it exhibits highly efficient catalytic activity with expanded operation temperature window width from 140 to 540 °C, nearly 100% N<sub>2</sub> selectivity, as well as superior tolerability against water vapor and SO<sub>2</sub>. Further structural/physicochemical characterizations demonstrate that the obtained Ti/Cu-SSZ-13 catalysts possess well-crystallized characteristic chabazite (CHA) structure. Isolated Cu<sup>2+</sup> and monomeric Ti<sup>4+</sup> are recognized as the primary active species, as the former mainly contributes to SCR reaction at low temperatures, while the latter are conducive for improving the high temperature SCR activity. Ti over doping would result in partial destruction of the zeolite structure, occupation of Cu<sup>2+</sup> cation sites and formation of surface aggregated TiO<sub><i>x</i></sub>, thus leading to unsatisfactory NH<sub>3</sub>-SCR performances. Moreover, formation of agglomerated CuO<sub><i>x</i></sub> species during hydrothermal ageing and blockage of surface active sites by sulfate species formed during SO<sub>2</sub> pretreatment are considered responsible for activity deterioration in the tolerability tests.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"26 4","pages":"346 - 357"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10563-022-09374-8.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-022-09374-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Series of Ti/Cu-SSZ-13 zeolite catalysts with variable Ti content were prepared via convenient in-situ one-pot synthesizing strategy. Systematic evaluations of the NH3-SCR catalytic performance over the obtained catalysts were conducted. Results show that Ti/Cu-SSZ-13 with appropriate Ti content (in the current work Ti0.81/Cu2.15-SSZ-13) could serve as capable candidate for NH3-SCR application, as it exhibits highly efficient catalytic activity with expanded operation temperature window width from 140 to 540 °C, nearly 100% N2 selectivity, as well as superior tolerability against water vapor and SO2. Further structural/physicochemical characterizations demonstrate that the obtained Ti/Cu-SSZ-13 catalysts possess well-crystallized characteristic chabazite (CHA) structure. Isolated Cu2+ and monomeric Ti4+ are recognized as the primary active species, as the former mainly contributes to SCR reaction at low temperatures, while the latter are conducive for improving the high temperature SCR activity. Ti over doping would result in partial destruction of the zeolite structure, occupation of Cu2+ cation sites and formation of surface aggregated TiOx, thus leading to unsatisfactory NH3-SCR performances. Moreover, formation of agglomerated CuOx species during hydrothermal ageing and blockage of surface active sites by sulfate species formed during SO2 pretreatment are considered responsible for activity deterioration in the tolerability tests.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.