Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform

IF 3.56 Q1 Medicine
R. Kannan, A. V. Ievlev, N. Laanait, M. A. Ziatdinov, R. K. Vasudevan, S. Jesse, S. V. Kalinin
{"title":"Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform","authors":"R. Kannan,&nbsp;A. V. Ievlev,&nbsp;N. Laanait,&nbsp;M. A. Ziatdinov,&nbsp;R. K. Vasudevan,&nbsp;S. Jesse,&nbsp;S. V. Kalinin","doi":"10.1186/s40679-018-0055-8","DOIUrl":null,"url":null,"abstract":"<p>Many spectral responses in materials science, physics, and chemistry experiments can be characterized as resulting from the superposition of a number of more basic individual spectra. In this context, unmixing is defined as the problem of determining the individual spectra, given measurements of multiple spectra that are spatially resolved across samples, as well as the determination of the corresponding abundance maps indicating the local weighting of each individual spectrum. Matrix factorization is a popular linear unmixing technique that considers that the mixture model between the individual spectra and the spatial maps is linear. Here, we present a tutorial paper targeted at domain scientists to introduce linear unmixing techniques, to facilitate greater understanding of spectroscopic imaging data. We detail a matrix factorization framework that can incorporate different domain information through various parameters of the matrix factorization method. We demonstrate many domain-specific examples to explain the expressivity of the matrix factorization framework and show how the appropriate use of domain-specific constraints such as non-negativity and sum-to-one abundance result in physically meaningful spectral decompositions that are more readily interpretable. Our aim is not only to explain the off-the-shelf available tools, but to add additional constraints when ready-made algorithms are unavailable for the task. All examples use the scalable open source implementation from https://github.com/ramkikannan/nmflibrary that can run from small laptops to supercomputers, creating a user-wide platform for rapid dissemination and adoption across scientific disciplines.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"4 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2018-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-018-0055-8","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-018-0055-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 40

Abstract

Many spectral responses in materials science, physics, and chemistry experiments can be characterized as resulting from the superposition of a number of more basic individual spectra. In this context, unmixing is defined as the problem of determining the individual spectra, given measurements of multiple spectra that are spatially resolved across samples, as well as the determination of the corresponding abundance maps indicating the local weighting of each individual spectrum. Matrix factorization is a popular linear unmixing technique that considers that the mixture model between the individual spectra and the spatial maps is linear. Here, we present a tutorial paper targeted at domain scientists to introduce linear unmixing techniques, to facilitate greater understanding of spectroscopic imaging data. We detail a matrix factorization framework that can incorporate different domain information through various parameters of the matrix factorization method. We demonstrate many domain-specific examples to explain the expressivity of the matrix factorization framework and show how the appropriate use of domain-specific constraints such as non-negativity and sum-to-one abundance result in physically meaningful spectral decompositions that are more readily interpretable. Our aim is not only to explain the off-the-shelf available tools, but to add additional constraints when ready-made algorithms are unavailable for the task. All examples use the scalable open source implementation from https://github.com/ramkikannan/nmflibrary that can run from small laptops to supercomputers, creating a user-wide platform for rapid dissemination and adoption across scientific disciplines.

Abstract Image

通过物理约束的线性分解进行深度数据分析:通用框架、领域示例和社区范围的平台
在材料科学、物理和化学实验中,许多光谱反应可以被描述为由许多更基本的单个光谱的叠加产生的。在这种情况下,解混被定义为确定单个光谱的问题,给定多个光谱的测量,这些光谱在空间上跨样品分辨,以及确定相应的丰度图,指示每个单独光谱的局部权重。矩阵分解是一种流行的线性解混技术,它认为单个光谱与空间图之间的混合模型是线性的。在这里,我们提出了一篇针对领域科学家的教程,介绍线性解混技术,以促进对光谱成像数据的更好理解。我们详细介绍了一个矩阵分解框架,该框架可以通过矩阵分解方法的不同参数来包含不同的领域信息。我们展示了许多特定领域的例子来解释矩阵分解框架的表达性,并展示了如何适当使用特定领域的约束,如非负性和和一丰度,从而产生更容易解释的物理上有意义的光谱分解。我们的目标不仅是解释现成的可用工具,而且在现成的算法无法用于任务时添加额外的约束。所有示例都使用来自https://github.com/ramkikannan/nmflibrary的可扩展开放源代码实现,它可以从小型笔记本电脑运行到超级计算机,从而创建一个用户范围的平台,用于快速传播和跨科学学科采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信