{"title":"A STUDY ON THE ROCK PHYSICS MODEL OF GAS RESERVOIR IN TIGHT SANDSTONE","authors":"Wang Da-xing","doi":"10.1002/CJG2.30028","DOIUrl":null,"url":null,"abstract":"According to the ultrasonic data of 51 measured core samples from 17 wells in the Sulige gas field, 304 groups of elastic parameters data including VP/VS and Poisson's ratio are obtained corresponding to different porosities and water saturations. The optimized rock physics corrections among the bulk modulus, Poisson's ratio, and gas saturation indicate that the Brie model (e=2) can fairly characterize the properties of upper Paleozoic Permian H8 reservoir in the Sulige gas field. Therefore, the proposed rock physics is able to estimate the physical parameters variation of tight sandstone reservoirs with gas-bearing saturation level. The proposed rock physics model is applied to predict gas-water reservoir by utilizing multi-wave seismic data of the Sulige gas field. The field test indicates that this model is capable of characterizing attributes of the target zone and predicting the gas-bearing reservoir.","PeriodicalId":55257,"journal":{"name":"地球物理学报","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CJG2.30028","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"地球物理学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/CJG2.30028","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 19
Abstract
According to the ultrasonic data of 51 measured core samples from 17 wells in the Sulige gas field, 304 groups of elastic parameters data including VP/VS and Poisson's ratio are obtained corresponding to different porosities and water saturations. The optimized rock physics corrections among the bulk modulus, Poisson's ratio, and gas saturation indicate that the Brie model (e=2) can fairly characterize the properties of upper Paleozoic Permian H8 reservoir in the Sulige gas field. Therefore, the proposed rock physics is able to estimate the physical parameters variation of tight sandstone reservoirs with gas-bearing saturation level. The proposed rock physics model is applied to predict gas-water reservoir by utilizing multi-wave seismic data of the Sulige gas field. The field test indicates that this model is capable of characterizing attributes of the target zone and predicting the gas-bearing reservoir.