Yang Wen-cai, Sun Yan-yun, Hou Zunze, Yuan Chang-qing
{"title":"A Multi‐Scale Scratch Analysis Method for Quantitative Interpretation of Regional Gravity Fields","authors":"Yang Wen-cai, Sun Yan-yun, Hou Zunze, Yuan Chang-qing","doi":"10.1002/CJG2.20154","DOIUrl":null,"url":null,"abstract":"This paper presents new systematic methods of regional gravity data processing that combine theories based on multi-scale wavelet analysis, spectral analysis of potential fields, geophysical inversion, and information extraction. We call this data processing system as the multi-scale scratch analysis for delineation of crustal structures, deformation belts and division of continental tectonic units. The multi-scale scratch analysis contains four modules; they are spectral analysis for division of density layers, decomposition of the field by using wavelet transformation and multi-scale analysis, depth estimation and density inversion of decomposed gravity anomalies, and scratch analysis. The basic principles, application techniques and examples for each module are explained. As a complicated and sophisticated process, the multi-discipline research on regional geophysics from geophysical investigation to tectonic results requires combination of new methods and techniques coming from different disciplines, to build a wide and thick theoretic base for supporting the multi-discipline research. The multi-scale scratch analysis combines supporting bases coming from applied mathematics, geophysics, and information science respectively.","PeriodicalId":55257,"journal":{"name":"地球物理学报","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CJG2.20154","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"地球物理学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/CJG2.20154","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents new systematic methods of regional gravity data processing that combine theories based on multi-scale wavelet analysis, spectral analysis of potential fields, geophysical inversion, and information extraction. We call this data processing system as the multi-scale scratch analysis for delineation of crustal structures, deformation belts and division of continental tectonic units. The multi-scale scratch analysis contains four modules; they are spectral analysis for division of density layers, decomposition of the field by using wavelet transformation and multi-scale analysis, depth estimation and density inversion of decomposed gravity anomalies, and scratch analysis. The basic principles, application techniques and examples for each module are explained. As a complicated and sophisticated process, the multi-discipline research on regional geophysics from geophysical investigation to tectonic results requires combination of new methods and techniques coming from different disciplines, to build a wide and thick theoretic base for supporting the multi-discipline research. The multi-scale scratch analysis combines supporting bases coming from applied mathematics, geophysics, and information science respectively.