Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study

L. Menviel, Jimin Yu, F. Joos, A. Mouchet, K. Meissner, M. England
{"title":"Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study","authors":"L. Menviel, Jimin Yu, F. Joos, A. Mouchet, K. Meissner, M. England","doi":"10.1002/2016PA003024","DOIUrl":null,"url":null,"abstract":"Atmospheric CO₂ was ~90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ¹³C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO₂ variations. We find that the mean ocean δ¹³C change can be explained by a 378 ± 88 Gt C(2σ) smaller LGM terrestrial carbon reservoir compared to the Holocene. Critically, in this model, differences in the oceanic δ¹³C spatial pattern can only be reconciled with a LGM ocean circulation state characterized by a weak (10–15 Sv) and relatively shallow (2000–2500 m) North Atlantic Deep Water cell, reduced Antarctic Bottom Water transport (≤10 Sv globally integrated), and relatively weak (6–8 Sv) and shallow (1000–1500 m) North Pacific Intermediate Water formation. This oceanic circulation state is corroborated by results from the isotope-enabled Bern3D ocean model and further confirmed by high LGM ventilation ages in the deep ocean, particularly in the deep South Atlantic and South Pacific. This suggests a poorly ventilated glacial deep ocean which would have facilitated the sequestration of carbon lost from the terrestrial biosphere and atmosphere.","PeriodicalId":19882,"journal":{"name":"Paleoceanography","volume":"32 1","pages":"2-17"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/2016PA003024","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/2016PA003024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

Atmospheric CO₂ was ~90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ¹³C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO₂ variations. We find that the mean ocean δ¹³C change can be explained by a 378 ± 88 Gt C(2σ) smaller LGM terrestrial carbon reservoir compared to the Holocene. Critically, in this model, differences in the oceanic δ¹³C spatial pattern can only be reconciled with a LGM ocean circulation state characterized by a weak (10–15 Sv) and relatively shallow (2000–2500 m) North Atlantic Deep Water cell, reduced Antarctic Bottom Water transport (≤10 Sv globally integrated), and relatively weak (6–8 Sv) and shallow (1000–1500 m) North Pacific Intermediate Water formation. This oceanic circulation state is corroborated by results from the isotope-enabled Bern3D ocean model and further confirmed by high LGM ventilation ages in the deep ocean, particularly in the deep South Atlantic and South Pacific. This suggests a poorly ventilated glacial deep ocean which would have facilitated the sequestration of carbon lost from the terrestrial biosphere and atmosphere.
从碳同位素推断末次盛冰期深海通风不良:数据模型比较研究
末次盛冰期(LGM)大气CO₂含量比全新世晚期降低了~90 ppmv,但这一变化的机制尚不清楚。本文采用碳同位素地球系统模型研究海洋环流在设定LGM海洋δ¹³C分布中的作用,从而提高我们对冰期/间冰期大气CO₂变化的认识。我们发现海洋δ¹³C的平均变化可以用一个比全新世小378±88 Gt C(2σ)的LGM陆地碳库来解释。至关重要的是,在该模式中,海洋δ¹³C空间格局的差异只能与LGM海洋环流状态相协调,其特征是北大西洋深水细胞弱(10 - 15 Sv)且相对较浅(2000-2500 m),南极底水输送减少(全球综合≤10 Sv),北太平洋中间水形成相对弱(6-8 Sv)且较浅(1000-1500 m)。同位素支持的Bern3D海洋模型的结果证实了这种海洋环流状态,并进一步证实了深海,特别是南大西洋和南太平洋深处的高LGM通气年龄。这表明,一个通风不良的冰川深海会促进从陆地生物圈和大气中流失的碳的封存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Paleoceanography
Paleoceanography 地学-地球科学综合
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信