{"title":"A critical review on crystal structure mechanisms, microstructural and electrical performances of Bi0.5Na0.5TiO3—SrTiO3 perovskites","authors":"Subramani Supriya","doi":"10.1007/s10832-022-00295-6","DOIUrl":null,"url":null,"abstract":"<div><p>The global demand for Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> (BNT) based perovskite materials with wide-ranging applications in the sensors, detectors, capacitors, random access memories, and environmental fields is on the increase. The Sr<sup>2+</sup> doped BNT system has been extensively investigated in the past decade due to its excellent structural, electrical and microstructural applications. This review encompasses the fundamental state-of-the-art development of BNT-based ceramics, focusing on the underlying SrTiO<sub>3</sub> (ST) composition and enhanced crystal structure mechanisms. The diffuse phase transition related to the ferroelectric nature of the sample is specifically demonstrated. BNT-ST in various forms like single crystals, thin films, multi-layers, and polycrystals for enhanced piezoelectric and ferroelectric activities were discussed in detail. Finally, these systems' key challenges and future directions are also included. Indeed, this review will propagate more exhaustive research on non-toxic and cost-effective pathways to produce BNT-based components with dynamic properties, which can be applied in several industrial applications with outstanding performance.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"49 2","pages":"94 - 108"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-022-00295-6.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-022-00295-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 10
Abstract
The global demand for Bi0.5Na0.5TiO3 (BNT) based perovskite materials with wide-ranging applications in the sensors, detectors, capacitors, random access memories, and environmental fields is on the increase. The Sr2+ doped BNT system has been extensively investigated in the past decade due to its excellent structural, electrical and microstructural applications. This review encompasses the fundamental state-of-the-art development of BNT-based ceramics, focusing on the underlying SrTiO3 (ST) composition and enhanced crystal structure mechanisms. The diffuse phase transition related to the ferroelectric nature of the sample is specifically demonstrated. BNT-ST in various forms like single crystals, thin films, multi-layers, and polycrystals for enhanced piezoelectric and ferroelectric activities were discussed in detail. Finally, these systems' key challenges and future directions are also included. Indeed, this review will propagate more exhaustive research on non-toxic and cost-effective pathways to produce BNT-based components with dynamic properties, which can be applied in several industrial applications with outstanding performance.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.