{"title":"The benefits differential equations bring to limb development","authors":"Donald A Fowler, H. Larsson","doi":"10.1002/wdev.364","DOIUrl":null,"url":null,"abstract":"Systems biology is a large field, offering a number of advantages to a variety of biological disciplines. In limb development, differential‐equation based models can provide insightful hypotheses about the gene/protein interactions and tissue differentiation events that form the core of limb development research. Differential equations are like any other communicative tool, with misuse and limitations that can come along with their advantages. Every theory should be critically analyzed to best ascertain whether they reflect the reality in biology as well they claim. Differential equation‐based models have consistent features which researchers have drawn upon to aid in more realistic descriptions and hypotheses. Nine features are described that highlight these trade‐offs. The advantages range from more detailed descriptions of gene interactions and their consequence and the capacity to model robustness to the incorporation of tissue size and shape. The drawbacks come with the added complication that additional genes and signaling pathways that require additional terms within the mathematical model. They also come in the translation between the mathematical terms of the model, values and matrices, to the real world of genes, proteins, and tissues that constitute limb development. A critical analysis is necessary to ensure that these models effectively expand the understanding of the origins of a diversity of limb anatomy, from evolution to teratology.","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"56 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.364","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2
Abstract
Systems biology is a large field, offering a number of advantages to a variety of biological disciplines. In limb development, differential‐equation based models can provide insightful hypotheses about the gene/protein interactions and tissue differentiation events that form the core of limb development research. Differential equations are like any other communicative tool, with misuse and limitations that can come along with their advantages. Every theory should be critically analyzed to best ascertain whether they reflect the reality in biology as well they claim. Differential equation‐based models have consistent features which researchers have drawn upon to aid in more realistic descriptions and hypotheses. Nine features are described that highlight these trade‐offs. The advantages range from more detailed descriptions of gene interactions and their consequence and the capacity to model robustness to the incorporation of tissue size and shape. The drawbacks come with the added complication that additional genes and signaling pathways that require additional terms within the mathematical model. They also come in the translation between the mathematical terms of the model, values and matrices, to the real world of genes, proteins, and tissues that constitute limb development. A critical analysis is necessary to ensure that these models effectively expand the understanding of the origins of a diversity of limb anatomy, from evolution to teratology.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.